Из чего сделан аккумулятор телефона. Как устроены аккумуляторы телефонов. Технология быстрой зарядки

Из чего сделан аккумулятор телефона. Как устроены аккумуляторы телефонов. Технология быстрой зарядки

Рассказывам об особенностях устройства батарей в мобильных девайсах.

Миллионы людей во всем мире являются активными пользователями мобильных устройств. Это плоды гигантской, мультимиллиардной индустрии, раз и навсегда изменившей наш образ жизни. Маленькие и не очень, функциональные и простые, дорогие и дешевые мобильные телефоны, планшеты и ноутбуки объединяет один фактор - все они используют для работы заряд батарей. Без них, все эти девайсы превратились бы в куски пластика, метала и текстолита, неспособные прожить и минуты без розетки.

Батареи внутри вашего мобильного устройства представляют собой чудеса химической инженерии - они способны накапливать огромный заряд энергии, способный поддерживать работоспособность устройств на протяжении часов. Как же они устроены?

Большинство современных мобильных устройств используют литий-ионные (или Li-ion) батареи, состоящие из двух основных частей: пары электродов и электролита между ними. Материалы, из которых сделаны эти электроды, варьируются (литий, графит и даже нанопровода), но все они полагаются на химические процессы в основе которых стоит литий.

Это химически активный метал, что подразумевает его способность вступать в реакцию с другими элементами. Чистый литий настолько активен, что воспламеняется под воздействием воздуха, поэтому большинство батарей используют его более безопасную разновидность, именуемую литий оксид кобальта.

Между двух электродов находится электролит, в роли которого обычно выступает жидкий органический растворитель, способный пропускать ток. Когда литий-ионная батарея заряжена, молекулы литий оксид кобальта удерживают электроны, которые затем высвобождаются, когда ваш телефон работает.

Литий-ионные батареи являются наиболее распространенными, потому что могут накапливать большой заряд при малом размере. Это измеряется по шкале плотности энергии на единицу массы. Для литий-ионной батареи этот показатель равен 0,46–0,72 МДж/кг. Для сравнения, у Никель-металл-гидридного аккумулятора (Ni-MH) он равняется 0,33 МДж/кг. Иными словами, литий-ионные батареи меньше и легче, чем другие типы аккумуляторов, что подразумевает более компактные девайсы с более продолжительной «живучестью» от одного заряда.

Емкость аккумулятора


Емкость батареи измеряется в миллиампер-часах (мАч), что означает какое количество энергии сможет выдать аккумулятор за конкретный промежуток времени. К примеру, если емкость батареи равна 1000 мАч, то она сможет предоставить вам 1000 миллиампер на протяжении 1 часа. Если ваш девас будет потреблять 500 миллиампер в час, то проработает он уже 2 часа.

Однако понятие «живучести батареи» чуть сложнее, вышеописанного принципа, так как потребление энергии варьируется в зависимости от того, какие задачи девайс выполняет. Например, если у него включен экран, работает антенна сотовой связи, а процессор загружен тяжелой работой, то девайс будет потреблять больше энергии, чем когда экран выключен, а процессор и антенна находятся в режиме ожидания.

Именно поэтому не нужно слепо полагаться на заявленные производителем показателям автономности работы - производитель может выдавать эти цифры с учетом основе яркости экрана, без включения некоторых функций, как-то Wi-Fi или GPS. Стоит отметить, что Apple в этом отношении действует более честно, указывая «живучесть» устройства на основании выполнения конкретных задач. Если вам любопытно сколько энергии поглощает в том или ином режиме работы, советуем воспользоваться специальным приложением Battery Life Pro.

Контроль за потоком энергии


Так как у литий-ионных батарей имеется тенденция к возгоранию, они должны быть подвержены тщательному контролю. Производители батарей достигли этого путем включения специального контроллера, который следит за силой тока. В итоге, каждый аккумулятор содержит внутри маленький компьютер, который предотвращает слишком быструю разрядку и потерю заряда до опасно низкого уровня. Этот компонент также регулирует силу тока во время зарядки, понижая его по мере того, как заряд батареи приближается к максимальной отметке, чтобы избежать чрезмерной зарядки.

Именно поэтому, полностью разряженный девайс, поставленный на подзарядку, греется в этом процессе намного сильнее, чем лишь немного разряженный.

Будущее аккумуляторов


Технологии по производству батарей не стоят на месте - множество исследовательских лабораторий по всему миру исследуют новые технологии, способные заменить литий, а также новые походы по созданию литий-ионных батарей. Среди новых технологий, много работы было проделано с супер-конденсаторами, в которых батарея хранит энергию в форме электричества, а затем высвобождает ее подобно вспышке на фотоаппарате.

Супер-конденсаторы заряжаются намного быстрее, так как в этом процессе практически не задействованы химические реакции, но современные представители такого рода накопителей способны отдавать заряд лишь короткими порциями, что является противоположностю тому, что требуется для большинства мобильных устройств.

Топливные элементы на основе водорода, тоже являются альтернативой существующим батареям. Система топливных элементов от Nectar, представленная на недавней CES, использует десятидолларовый картридж, способный питать мобильный телефон до двух недель. Однако топливные элементы все еще слишком велики, чтобы поместится в телефоне - та же система от Nectar просто подзаряжает литий-ионную батарею, а не заменяет ее.

А вот сера вполне может занять место внутри литий-ионных батарей. Ученые из Стэндфордского Университета недавно представили нанотехнологию по включению серы в химический состав батареи, что увеличило ее емкость в пять раз, а также увеличило срок службы. В то же время, эта технология находится пока на ранней стадии развития и не выйдет на рынок в ближайшие несколько лет.

P.S. Аккумуляторы в мобильных устройствах, равно как и обычные батарейки, требуют определенной утилизации - просто так выбрасывать их в мусорный бак нельзя. Поэтому рады напомнить вам, что iLand готов взять на себя утилизацию отживших свое элементов питания. Просто принесите их к нам в офис, а об остальном мы позаботимся!

У всех аккумуляторных батарей, которые используются в мобильных устройствах, с краю имеются контакты. С помощью них производится процесс зарядки. В статье разбираются вопросы: за что отвечают каждый из контактов и чем отличается питание трехконтактных от четырёхконтактных батарей. Рассматривается, какую функцию они выполняют, как помогают лучше функционировать.

Содрежание

Зачем 3 контакта на аккумуляторе телефона

В зависимости от схемы питания, создается определённое количество разъемов. Два, три или четыре. Которые слева и справа обозначают + и -, что определяет положительный, отрицательный вывод питания. Третий, средний контакт, присутствует на батарее в качестве источника передачи служебной информации, куда входит: состояние заряда, температура и другие полезные данные.

За температуру отвечает датчик, встроенный в аккумулятор. За контроль заряда контроллер. Датчик контролирует температуру во время процесса заряда. Он передаёт информацию о заряде в процентах, отключает в случае перезаряда или переразряда. Процесс позволяет продлить срок эксплуатации, что допускает не тратить деньги на новую АКБ. Актуальный вопрос для владельцев, у которых несьёмный аккумулятор.

В «навороченных» смартфонах третий контакт передаёт информацию о технических характеристиках: серийный номер, информацию о телефоне, о производителе и прочее.

Важно! Именно li-ion аккумуляторы для мобильных устройств оснащаются третьим разъемом, по причинам, описанным выше.

Зачем 4 контакта на аккумуляторе телефона

Если на трехконтактных батареях третий (средний) вывод отвечает за контроль температуры, перезаряда, передачи служебной информации, то четвертый вывод, возможно, забирает на себя часть функций третьего контакта, как на подобных телефонах.

Важно! В этом случае нельзя точно ответить, за что конкретно отвечает третий разъем, а за что четвертый. Производители зарядных устройств не афиширует этот вопрос.

На мобильных устройствах 4 контакт может играть роль защиты, когда он вставлен не в «родное» устройство. Не произойдёт процесса зарядки, потому что информация, передаваемая через этот контакт, не будет соответствовать той, которая используется в «настоящем» устройстве. Например, у вас телефон Samsung. И вы не можете найти к нему батарею той же марки. Ищите аналог, который подходит. Возможно, в нем похожая схема расположения элементов питания, как и лицензионная батарейка марки.

Прочитав статью, становится понятно, что третий и четвертый контакт на батарее мобильного устройства играет важную роль. Помогает предохранять от перезаряда и переразряда. Сбрасывает информацию процессору. Продлевает время эксплуатации телефона, что важно в повседневной жизни, когда без смартфона уже даже некомфортно выходить на улицу. Работоспособность полностью зависит от заряда, поэтому так важно знать, для чего используются все представленные на аккумуляторе разъемы. Пригодится, когда потребуется разобраться с зарядкой другого аппарата.

Аккумулятор - неотъемлемая часть мобильного телефона, которая обеспечивает ему автономную работу. От правильности эксплуатации аккумулятора, а также от возможностей вашего телефона будет зависеть то, как часто вам придется использовать зарядное устройство.

Виды аккумуляторов

Существует три основных вида аккумуляторов, используемых в мобильных телефонах: никель-кадмиевые, литий-ионные и литий-полимерные. На самом деле их больше, но остальные виды не получили массового распространения, поэтому мы оставим их за рамками этой статьи.

Никель-кадмиевые аккумуляторы когда-то были очень популярными, но сегодня от них почти отказались из-за пагубного влияния на экологию и ряда других недостатков. В современных мобильных телефонах их не используют, разве что вы найдете такой аккумулятор в какой-нибудь очень старой модели. В свое время их массовое распространение было обусловлено низкой стоимостью, в остальном же они обладали целым рядом отрицательных качеств: быстрая саморазрядка, низкое соотношение емкости и физических размеров, сильное разогревание в процессе эксплуатации. Никель-кадмиевые аккумуляторы обладают так называемым «эффектом памяти», из-за которого их приходится регулярно по несколько циклов подряд заряжать и разряжать полностью. Этот эффект проявляется тогда, когда начинают подзаряжать еще не севший полностью аккумулятор. При этом остается заряд, который не может быть использован, а в результате снижается время автономной работы устройства. Для никель-кадмиевых аккумуляторов в среднем характерно свыше 1000 циклов зарядки-разрядки.

Самое большое распространение в современных мобильных устройствах получили литий-ионные аккумуляторы. Они более долговечные и менее вредные для окружающей среды, чем никель-кадмиевые, и при этом обладают гораздо большей энергетической плотностью: при скромных физических размерах имеют относительно высокую емкость. У них отсутствует «эффект памяти», им свойственна низкая скорость саморазрядки. К недостаткам этого вида аккумуляторов можно отнести старение (даже если они не используются по прямому назначению), поэтому покупать их впрок не рекомендуется. А еще лучше обращать внимание на дату производства при покупке нового литий-ионного аккумулятора. Этот вид аккумуляторов не требует какого-либо особого обслуживания, но при правильном хранении (в заряженном состоянии) и эксплуатации с соблюдением температурного режима он прослужит гораздо дольше. Для литий-ионных аккумуляторов в среднем характерно от 500 до 1000 циклов зарядки-разрядки.


Литий-полимерные аккумуляторы представляют собой усовершенствованную модель литий-ионных аккумуляторов, но при этом стоят дешевле. Они отличаются высокой энергетической плотностью, медленной саморазрядкой, а также они еще более безопасны для окружающей среды. Как и литий-ионным аккумуляторам, им свойственно постепенное старение. Для литий-полимерных аккумуляторов в среднем характерно от 500 до 600 циклов зарядки-разрядки.

Особенности эксплуатации аккумуляторов

Сократить срок службы большинства аккумуляторов или полностью привести их в негодность могут следующие причины:

  • несоблюдение правил эксплуатации (переохлаждение, перегрев, попадание влаги);
  • физические повреждения контактной группы;
  • самостоятельное вскрытие аккумулятора в домашних условиях;
  • частые падения и удары;
  • подзарядка аккумулятора с включенным телефоном;
  • замена аккумулятора с включенным телефоном;
  • регулярные длительные подзарядки (больше суток во включенном состоянии);
  • длительное хранение без эксплуатации.

Любой из трех рассмотренных видов аккумуляторов со временем теряет свою емкость и через 2-3 года постоянной эксплуатации подлежит замене. Это нормальный процесс - не стоит ругать производителей за некачественный продукт, который часто служит гораздо меньше, чем сам мобильный телефон. Если возникла необходимость замены, следует выбирать более дорогие фирменные аккумуляторы, а не дешевые подделки, так как экономия в этом случае может получиться очень сомнительной.

Также следует знать, что на длительность автономной работы вашего устройства может значительно повлиять расположение базовых станций мобильного оператора. Чем дальше станция, тем больше энергии требуется для получения сигнала и тем быстрее потребуется повторная подзарядка аккумулятора.

Выбор телефона в зависимости от емкости аккумулятора

Сегодня в продаже можно встретить телефоны, которые укомплектованы аккумуляторами емкостью от 800 до 1500 мА·ч. Есть модели телефонов с емкостью аккумулятора вне этого диапазона, но они скорее являются исключением из правил.

При покупке телефона и предварительном расчете времени его автономной работы следует правильно оценивать возможности мобильного устройства в целом. Дело в том, что далеко не каждый телефон или смартфон с аккумулятором емкостью 1300-1500 мА·ч будет работать неделями напролет, все может быть как раз наоборот. Производитель обычно указывает в спецификациях устройства не только емкость аккумулятора, но и время автономной работы в режиме непрерывного разговора по телефону и в режиме ожидания. В первом случае это обычно 5-8 часов, во втором - около двух недель. Но это сухие цифры для крайних случаев - на самом деле мы понимаем, что разговаривать часами или просто смотреть на телефон сутки напролет никто не будет. Поэтому реальное время работы телефона будет зависеть от его технических характеристик и емкости аккумулятора, а не от одного какого-либо фактора.


Обычно чем телефон проще, тем дольше он сможет проработать без подзарядки. Основная часть «долгоиграющих» телефонов - это типичные моноблоки, которые имеют самый обычный экран диагональю до 2 дюймов и не подразумевают постоянное использование беспроводных коммуникаций (модулей Bluetooth, Wi-Fi, GPS и т. п.). Емкость аккумуляторов для большинства этих устройств невелика (до 1000 мА·ч), но отсутствие энергоемких функций и модулей при умеренной нагрузке позволяет подзаряжать его примерно раз в 5-7 дней. Под умеренной нагрузкой мы понимаем ежедневные звонки в течение 30-50 минут, 2-3 отправленных/принятых сообщения, 1-2 сделанных фотокамерой снимка, около получаса работы с дополнительными приложениями (браузером, органайзером, аудиопроигрывателем).

Сегодня очень популярными являются мобильные телефоны и смартфоны с сенсорными экранами . Они современные и удобные, но не могут долго работать без подзарядки. Крупные сенсорные экраны (а чаще всего они имеют 3-4 дюйма по диагонали) являются очень энергоемкими, к тому же значительную нагрузку дает аппаратная платформа (если речь идет о смартфоне). Кроме того, тачфоны чаще других используют для проверки электронной почты, прокладки маршрута, передачи данных, просмотра мультимедийного контента - все эти возможности дополнительно «съедают» изрядную долю емкости аккумулятора. За редким исключением, график работы смартфонов с сенсорными экранами следующий: работа днем, подзарядка вечером.

Статьи и Лайфхаки

Содержание :

1.
2.
3.
4.
5.
6.

Год от года аккумуляторы в смартфонах становятся всё более совершенными: увеличивается их емкость, уменьшаются вес и габариты, исчезают недостатки.

Не стоит забывать и про экологическую безопасность, ведь эта деталь считается наиболее «грязной» в современных гаджетах.

Посмотрим, какие же «батарейки» можно встретить сегодня в мобильных устройствах.


Основные виды аккумуляторов

На протяжении истории развития сотовых телефонов в них использовалось четыре вида батарей :
  • никель-кадмиевые;
  • никель-металлогибридные;
  • литий-ионные;
  • литий-полимерные.
К настоящему времени в арсенале разработчиков остались два последних типа как наиболее технологичные, эффективные и «чистые». Именно эти виды аккумуляторов можно встретить в описаниях большинства смартфонов.

Этот тип источников питания пришел еще из домобильной эры. Первые образцы известны с конца XIX века. До конца минувшего столетия промышленники предпринимали многочисленные попытки избавиться от присущих им недостатков, и в какой-то мере им это удалось.

Так или иначе, особого выбора у разработчиков первых мобильных устройств просто не было. Основные претензии заключались в следующем :

  • использование в конструкции вредных для здоровья человека токсичных металлов;
  • недостаточная емкость батареи;
  • ограниченное число циклов заряда/разряда;
  • низкая технологичность в производстве, приводящая к повышению себестоимости;
  • так называемый «эффект памяти».
Последний состоял в том, что при зарядке не до конца разряженной батареи ее емкость уменьшалась на определенную величину. Как следствие, перед первым использованием аккумулятор приходилось несколько раз прогонять через цикл полного заряда-разряда.

Имелись у таких источников питания и плюсы – широкий диапазон рабочих температур. Тем не менее, минусов было существенно больше, и при попытке справиться с ними был создан следующий тип батареи.


В них отсутствовал токсичный кадмий, при одном упоминании о котором с особо впечатлительными защитниками природы случается истерика. Кроме того, эффект памяти был выражен значительно слабее.

Также повысилась и емкость, а себестоимость, напротив, немного снизилась. Но были по сравнению с NiCd аккумуляторами и серьезные недостатки :

  • необходимость использования сложного зарядного устройства;
  • уменьшение числа циклов заряда/разряда.
Оба вида батарей были подвержены достаточно высокой степени саморазряда, что серьезно ограничивало автономность мобильных устройств на их основе. И когда на горизонте появилось следующее поколение, конструкторы с радостным визгом вышвырнули их на свалку истории.


Этот тип батарей вызвал настоящую революцию в мире гаджетов.

Отныне длительность их работы в режиме ожидания возросла в разы. Исчез и набивший оскомину эффект памяти, хотя некоторые особо продвинутые пользователи по старой памяти продолжают «тренировать» аккумуляторы своих девайсов.

Большинство представленных сегодня на рынке моделей смартфонов оснащено именно этим типом аккумулятора.

Но есть у них и недостатки, причем достаточно неприятные :

  1. Узкий диапазон рабочих температур.
  2. Потенциальная опасность разрушения батареи при глубоком разряде или перезарядке.
  3. Быстрое «старение», спустя 2-3 года выводящее аккумулятор из строя.
  4. Довольно высокая себестоимость.
Следует сказать, что со времен первого появления в магазинах этого типа источника питания недостатки были существенно нивелированы. Но производителям хотелось большего.

Прежде всего, их не устраивала достаточно высокая себестоимость, поэтому был создан очередной тип батареи.


В них взрывоопасный электролит уступил место полимерной массе. Цена таких источников питания снизилась незначительно, главным образом – из-за необходимости использования более сложных защитных схем. Мощность тоже не слишком увеличилась.

Но зато твердый полимер хорош тем, что развязал руки дизайнерам, позволив по своему усмотрению выбирать форму и размер элемента. Приблизительно в это время появилось множество сверхтонких моделей смартфонов с несъемными аккумуляторами.

Оба типа литиевых батарей имеют общий недостаток: вне зависимости от интенсивности использования и числа циклов заряда/разряда их емкость постепенно снижается. И уже спустя пару лет гаджет со спокойной совестью можно выбрасывать. Или, скажем, повесить на стену в качестве экзотического украшения.

Считается, что литий-полимерный тип чуть менее «живучий», но эта информация – из разряда мифов, встречаются примеры, как подтверждающие, так и опровергающие это утверждение. Так что наверняка отличить правду от вымысла не представляется возможным.

Технология быстрой зарядки

Нередко от продавцов, предлагающих купить смартфон, можно услышать о некоем аккумуляторе с функцией быстрой зарядки. Особо продвинутые пугают покупателей еще и внушительно звучащим Qualcomm Quick Charge, а самые матерые добавляют еще и версию – 2.0 или 3.0. Что же это за чудо-батареи такие?

В действительности никакого отношения к типу источника питания эта технология не имеет. Она всего лишь позволяет использовать увеличенную силу тока, благодаря чему время зарядки существенно сокращается.

А чтобы не возник губительный перезаряд и зарядка осуществлялась правильно – следит чипсет, в котором, собственно, эта технология и реализована. На сегодняшний день она отлично отработана, и угрозы гаджету при ее использовании не возникает.

Подводя итоги, можно сказать : основными типами аккумуляторов в смартфонах сегодня являются литий-ионные (Li-Ion) и литий-полимерные (Li-Pol). В моделях мобильных устройств можно встретить как те, так и другие, и какой-то альтернативы им в обозримом будущем не просматривается.

Но зато массовое внедрение таких батарей превратило литий в стратегически значимый элемент, а страны, располагающие залежами минералов, его содержащих – в объекты коммерческого (и не только) интереса транснационального капитала.

Аккумуляторы для мобильных устройств

Устройство и основные параметры

Сотовые телефоны и переносные компьютеры, радиостанции и радиотелефоны, источники бесперебойного питания, кинокамеры и фотоаппараты, ручные мощные инструменты, медицинские приборы, разнообразное производственное оборудование — вот далеко не полный перечень устройств, нормальная работоспособность которых напрямую зависит от состояния аккумуляторов. В связи с этим, знание характеристик, особенностей и условий эксплуатации различных типов аккумуляторов приобретает особое значение и является залогом безотказной работы мобильных устройств и портативного оборудования.

Если Вы любопытны и обладаете некоторыми навыками по порче игрушек, приобретенными еще в детстве, то уже наверняка познакомились с внутренним устройством своего бывшего в эксплуатации аккумулятора. Что же там внутри? (Не советую разбирать, это связано с риском получения физических повреждений). Вообще то ничего особенного. Круглые или призматические «батарейки», каких навалом в ближайшем магазине, причем по гораздо более низкой цене. Однако первое впечатление — обманчиво. Перед Вами не просто батарейки, а аккумуляторы. И отличаются они от батареек тем, что допускают (в силу обратимости протекающих в них реакций) многократные циклы разряда — заряда. В этом их преимущество перед батарейками, но с другой стороны и «головная боль», которую они приносят в случае потери работоспособности. И если с первыми все просто: купил, вставил, истощились, выбросил и купил новые, то с аккумуляторами дело обстоит сложнее. Для них последовательность действий иная: купил; подготовил к работе; пользуешься, соблюдая правила эксплуатации; и только когда уже совсем невмоготу — покупаешь новый.

Итак, чтобы не было мучительно больно за бесцельно потраченные деньги, ниже информация для любопытных и любознательных на тему: что нужно знать об аккумуляторах для мобильных телефонов и портативных компьютеров.

Устройство

Любой аккумулятор, как правило, состоит из нескольких единичных элементов, соединенных последовательно для увеличения значения вырабатываемого напряжения и упакованных в общий корпус. С конструкцией единичного элемента аккумулятора, например никель-металлгидридного, с электрохимическими реакциями, проходящими внутри него, и другими полезными сведениями (на английском языке) можно познакомиться на сайте фирмы Panasonic , загрузив файл в формате pdf Overview information on NiMH Batteries in PDF Format — 137KB .

Кроме единичных элементов аккумуляторы на основе никеля содержат внутри тепловой предохранитель и датчик температуры (последний в NiCd аккумуляторах может отсутствовать). Тепловой предохранитель обеспечивает безопасность при больших токах заряда, а выходной сигнал датчика температуры обрабатывается зарядным устройством. В зависимости от значения температуры «грамотное» зарядное устройство обеспечивает различные режимы заряда аккумулятора: быстрый, медленный и переключение от одного к другому.

Литий-ионные аккумуляторы помимо теплового предохранителя и датчика температуры содержат специальную управляющую интегральную схему и управляющие ключи. Все это в совокупности призвано защитить потребителя от физических повреждений в случае нарушения электрических режимов эксплуатации аккумулятора.

ОСНОВНЫЕ ПАРАМЕТРЫ АККУМУЛЯТОРОВ

Да будет Вам известно, что аккумулятор, как электрический прибор, характеризуется следующими основными параметрами: типом электрохимической системы, напряжением, электрической емкостью, внутренним сопротивлением, током саморазряда и сроком службы. Причем, в зависимости от сферы применения на первый план выступают то одни параметры, то другие. Например, аккумулятор для сотовых телефонов должен оцениваться по совокупности значений трех его основных характеристик: реальной емкости, внутреннему сопротивлению и току саморазряда, а аккумулятор домашнего радиотелефона с радиусом действия до 100 метров достаточно оценить только по емкости и саморазряду. При недооценке или игнорировании какого-либо параметра или преувеличении важности одного из них (как правило, емкости) можно оказаться в ситуации «у разбитого корыта».

Напряжение . Напряжение аккумулятора определяется тем устройством, для питания которого он предназначен. Если требуемое значение напряжения не обеспечивается одним элементом, то аккумулятор собирается из нескольких элементов, соединенных последовательно. Например, в сотовых телефонах различных моделей используются аккумуляторы напряжением 3,6 В (1 Li-ion элемент или 3 NiCd, или 3 NiMH элемента), 4,8 В (только 3 NiCd или 3 NiMH элемента), 6 В (только 5 NiCd или 5 NiMH элементов), 7,2 В (2 Li-ion элемента). Таким образом, если в телефоне используются 4 NiMH аккумулятора общим напряжением 4,8 В (как, например, в некоторых последних моделях фирмы Ericsson), то использование в нем Li-ion аккумуляторов невозможно. Напряжение аккумулятора в процессе работы не постоянно. Оно максимально сразу после окончания заряда, а затем в процессе работы или хранения уменьшается. В конце концов, оно уменьшается до такой величины, что сотовый телефон не включается или автоматически выключается. При оценке состояния аккумулятора измерение его напряжения необходимо производить под нагрузкой, на которую он рассчитан.

Электрическая емкость . Номинальная электрическая емкость — это то количество энергии, которым аккумулятор теоретически должен обладать в заряженном состоянии. Данный параметр аналогичен емкости какого-либо сосуда, например, стакана. Так в стандартный граненый стакан можно налить 200 мл воды (по ободок), в конкретный аккумулятор можно закачать также лишь вполне определенное количество энергии. Но определяется это количество энергии (емкость) не в момент закачивания (заливания), а при обратном процессе — разряде (выливании энергии) аккумулятора постоянным током в течение измеряемого промежутка времени до момента достижения заданного порогового напряжения. Измеряется емкость соответственно в ампер-часах (А·час) или миллиампер-часах (мА·час) и обозначается буквой «С». Значение емкости указывается на этикетке аккумулятора или зашифровано в обозначении его типа. Реальное значение емкости нового аккумулятора на момент ввода его в эксплуатацию колеблется от 80 до 110% от номинального значения и зависит: от фирмы-изготовителя, условий и срока хранения и технологии ввода в эксплуатацию. Теоретически аккумулятор, например, номинальной емкостью 1000 мА*час может отдавать ток 1000 мА в течение одного часа, 100 мА в течение 10 часов, или 10 мА в течение 100 часов. Практически же, при высоком значении тока разряда номинальная емкость не достигается, а при низком токе — превышается.

В процессе эксплуатации емкость аккумулятора уменьшается. Скорость уменьшения зависит от типа электрохимической системы, технологии обслуживания в процессе работы, используемых зарядных устройств, условий и срока эксплуатации. Используя ту же аналогию со стаканом, можно сказать, что количество наливаемой в стакан воды будет уменьшаться, если будете наливать воду с большим количеством механических примесей, а сливать — отстоявшуюся. Тогда в стакане постепенно будет накапливаться осадок, уменьшающий его полезную емкость. В аккумуляторе подобный «осадок» образуется в процессе циклов заряда / разряда.

Внутреннее сопротивление . Внутреннее сопротивление аккумулятора (сопротивление источника тока) определяет его способность отдавать в нагрузку большой ток. Эта зависимость подчиняется закону Ома (вспомните курс школьной физики). При низком значении внутреннего сопротивления, аккумулятор способен отдать в нагрузку больший пиковый ток (без существенного уменьшения напряжения на его выводах), а значит и большую пиковую мощность. В то время как высокое значение сопротивления приводит к резкому уменьшению напряжения на выводах аккумулятора при резком увеличении тока нагрузки. Такой коллапс (уменьшение) напряжения характеризует «слабость» внешне хорошего аккумулятора, потому что запасенная энергия не может быть полностью выдана в нагрузку.

Другими словами, все вышесказанное о внутреннем сопротивлении аккумулятора может быть проиллюстрировано следующим образом. Представим себе, что Вам необходимо за час полить садовый участок из бака (аккумулятор), который Вы ранее заполнили водой. При нормальном положении вещей Вы подключаете к сливному крану шланг, полностью открываете кран и поливаете участок в течение часа до тех пор, пока вода в баке не закончится. А теперь предположим, что сливной кран у вашего бака заклинило, открыть его можно только чуть-чуть и вода сочится из него лишь тоненькой струйкой. Вроде бы и вода в баке есть (аккумулятор заряжен), а нормально поливать невозможно. Кран в данном случае играет роль внутреннего сопротивления для бака. Если струя из крана большая, то внутреннее сопротивление бака мало, если — маленькая — внутреннее сопротивление бака большое.

Что имеем практически? Сотовый телефон в режиме ожидания потребляет от аккумулятора небольшой ток и пропускной способности крана его аккумулятора вполне хватает для питания телефона. Как только поступает входящий звонок или Вы начинаете делать исходящий, телефону требуется в десятки раз больше энергии для нормальной работы в режиме передачи, поэтому требуется увеличить пропускную способность крана. Если кран — нормальный, то он пропустит через себя этот увеличенный поток энергии, если его — заклинило, то — нет, и телефон отключается. Это особенно характерно для сотовых телефонов стандартов NMT, AMPS, транковых и обычных радиостанций, портативных компьютеров.

Внутреннее сопротивление аккумулятора зависит от типа его электрохимической системы, емкости, числа элементов в аккумуляторе, соединенных последовательно, и возрастает к концу срока эксплуатации.

Саморазряд . Явление саморазряда в большей или меньшей степени характерно для всех типов аккумуляторов и заключается в потере ими своей емкости после того, как они были полностью заряжены. Для количественной оценки саморазряда удобно использовать величину потерянной ими за определенное время емкости, выраженную в процентах от значения, полученного сразу после заряда. За промежуток времени, как правило, принимается интервал времени, равный одним суткам и одному месяцу. Так, например, для исправных NiCd аккумуляторов считается допустимым саморазряд до 10% в течение первых 24 часов после окончании заряда, для NiMH — немного больше, а для Li-ion пренебрежимо мал и оценивается за месяц. Следует отметить, что саморазряд аккумуляторов максимален именно в первые 24 часа после заряда, а затем значительно уменьшается.

Саморазряд аккумуляторов зависит от качества использованных материалов, технологического процесса изготовления, типа и конструкции аккумулятора. Он резко возрастает при повышении окружающей температуры, повреждении внутреннего сепаратора аккумулятора из-за неправильного обслуживания и вследствие процесса старения.

Срок службы (срок эксплуатации) аккумулятора . Его принято оценивать по количеству циклов заряда / разряда, которое аккумулятор выдерживает в процессе эксплуатации без значительного ухудшения своих основных параметров: емкости, саморазряда и внутреннего сопротивления. Срок службы зависит от многих факторов: методов заряда, глубины разряда, процедуры обслуживания или его отсутствия, температуры и электрохимической природы аккумулятора. Кроме того, он определяется временем, прошедшим со дня изготовления, особенно для Li-ion аккумуляторов. Аккумулятор, как правило, считается вышедшим из строя после уменьшения его емкости ниже 80% от номинального значения.

Для более подробного и профессионального ознакомления с аккумуляторами можно порекомендовать сайт фирмы Panasonic , где приведены подробнейшие справочные данные и аналитические материалы о NiCd, NiMH, Li-ion аккумуляторах, производимых этой фирмой (на английском языке). К сожалению, фирма не дала разрешения на перевод и публикацию этой информации на русском языке, сославшись на отсутствие ее представительства в России в этой области и невозможности оценки переведенных материалов. Но размещенные там сведения представляют определенный интерес как для разработчиков аппаратуры с питанием от аккумуляторов, так и для пользователей, поэтому ниже приведен краткий перечень освещаемых там вопросов:

  • внешний вид;
  • внутреннее устройство;
  • электрохимические реакции, происходящие внутри аккумулятора;
  • особенности;
  • пять основных характеристик: зарядные, разрядные, число циклов заряда / разряда, хранение (саморазряд), безопасность с графиками и пояснениями;
  • методы заряда;
  • упаковка элементов в аккумуляторы;
  • предосторожности при разработке устройств с аккумуляторами.

При написании статьи использованы материалы, любезно предоставленные г-ном Isidor Buchmann, основателем и главой Канадской компании Cadex Electronics Inc. .

Более подробная информация на русском языке об аккумуляторах для мобильной техники связи, компьютеров и других портативных приборов, советы по эксплуатации и обслуживанию приведены в

ССЫЛКИ

  1. Cadex Electronics Inc. , Vancouver, BC , Canada — разработчик и производитель зарядных устройств, анализаторов и систем обслуживания аккумуляторов (на английском языке).
  2. Аккумуляторы для мобильных устройств и портативных компьютеров . Анализаторы аккумуляторов (на русском языке).
  3. , производимых фирмой Panasonic (на английском языке).