Физический смысл относительной магнитной проницаемости. Магнитные свойства вещества. Магнитная проницаемость. Ферромагнетики

Физический смысл относительной магнитной проницаемости. Магнитные свойства вещества. Магнитная проницаемость. Ферромагнетики

Многочисленные опыты свидетельствуют о том, что все вещества, помещенные в магнитное поле, намагничиваются и создают собственное магнитное поле, действие которого складывается с действием внешнего магнитного поля:

$$\boldsymbol{\vec{B}={\vec{B}}_{0}+{\vec{B}}_{1}}$$

где $\boldsymbol{\vec{B}}$ - магнитная индукция поля в веществе; $\boldsymbol{{\vec{B}}_{0}}$ - магнитная индукция поля в вакууме, $\boldsymbol{{\vec{B}}_{1}}$ - магнитная индукция поля, возникшего благодаря намагничиванию вещества. При этом вещество может либо усиливать, либо ослаблять магнитное поле. Влияние вещества на внешнее магнитное поле характеризуется величиной μ , которая называется магнитной проницаемостью вещества

$$ \boldsymbol{\mu =\frac{B}{{B}_{0}}}$$

  • Магнитная проницаемость - это физическая скалярная величина, показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.

Все вещества состоят из молекул, молекулы - из атомов. Электронные оболочки атомов можно условно рассматривать состоящими из круговых электрических токов, образованных движущимися электронами. Круговые электрические токи в атомах должны создавать собственные магнитные поля. На электрические токи должно оказывать действие внешнее магнитное поле, в результате чего можно ожидать либо усиления магнитного поля при сонаправленности атомных магнитных полей с внешним магнитным полем, либо их ослабления при их противоположной направленности.
Гипотеза о существовании магнитных полей в атомах и возможности изменения магнитного поля в веществе полностью соответствует действительности. Все вещества по действию на них внешнего магнитного поля можно разделить на три основные группы: диамагнетики, парамагнетики и ферромагнетики.

Диамагнетиками называются вещества, в которых внешнее магнитное поле ослабляется. Это значит, что магнитные поля атомов таких веществ во внешнем магнитном поле направлены противоположно внешнему магнитному полю (µ < 1). Изменение магнитного поля даже в самых сильных диамагнетиках составляет лишь сотые доли процента. Например, висмут обладает магнитной проницаемостью µ = 0,999826.

Для понимания природы диамагнетизма рассмотрим движение электрона, который влетает со скоростью v в однородное магнитное поле перпендикулярно вектору В магнитного поля.

Под действием силы Лоренца электрон станет двигаться по окружности, направление его вращения определяется направлением вектора силы Лоренца. Возникший круговой ток создаёт своё магнитное поле В" . Это магнитное поле В" направлено противоположно магнитному полю В . Следовательно, любое вещество, содержащее свободно движущиеся заряженные частицы, должно обладать диамагнитными свойствами.
Хотя в атомах вещества электроны не свободны, изменение их движения внутри атомов под действием внешнего магнитного поля оказывается эквивалентным круговому движению свободных электронов. Поэтому любое вещество в магнитном поле обязательно обладает диамагнитными свойствами.
Однако диамагнитные эффекты очень слабы и обнаруживаются только у веществ, атомы или молекулы которых не обладают собственным магнитным полем. Примерами диамагнетиков являются свинец, цинк, висмут (μ = 0,9998).

Впервые объяснение причин, вследствие которых тела обладают магнитными свойствами, дал Анри Ампер (1820 г.). Согласно его гипотезе, внутри молекул и атомов циркулируют элементарные электрические токи, которые и определяют магнитные свойства любого вещества.

Рассмотрим причины магнетизма атомов более подробно:

Возьмем некоторое твердое вещество. Его намагниченность связана с магнитными свойствами частиц (молекул и атомов), из которых оно состоит. Рассмотрим, какие контуры с током возможны на микроуровне. Магнетизм атомов обусловлен двумя основными причинами:

1) движением электронов вокруг ядра по замкнутым орбитам (орбитальный магнитный момент ) (рис. 1);

Рис. 2

2) собственным вращением (спином) электронов (спиновой магнитный момент ) (рис. 2).

Для любознательных . Магнитный момент контура равен произведению силы тока в контуре на площадь, охватываемую контуром. Его направление совпадает с направлением вектора индукции магнитного поля в середине контура с током.

Так как в атоме плоскости орбит различных электронов не совпадают, то вектора индукций магнитных полей , созданные ими (орбитальные и спиновые магнитные моменты), направлены под разными углами друг к другу. Результирующий вектор индукции многоэлектронного атома равен векторной сумме векторов индукций полей, создаваемых отдельными электронами. Не скомпенсированными полями обладают атомы с частично заполненными электронными оболочками. В атомах с заполненными электронными оболочками результирующий вектор индукции равен 0.

Во всех случаях изменение магнитного поля обусловлено появлением токов намагниченности (наблюдается явление электромагнитной индукции). Иными словами принцип суперпозиции для магнитного поля остается справедливым: поле внутри магнетика является суперпозицией внешнего поля $\boldsymbol{{\vec{B}}_{0}}$ и поля $\boldsymbol{\vec{B"}}$ токов намагничивания i" , которые возникают под действием внешнего поля. Если поле токов намагниченности направлено так же, как и внешнее поле, то индукция суммарного поля будет больше внешнего поля (Рис. 3, а) – в этом случае мы говорим, что вещество усиливает поле; если же поле токов намагниченности направлено противоположно внешнему полю, то суммарное поле будет меньше внешнего поля (Рис. 3, б) – именно в этом смысле мы говорим, что вещество ослабляет магнитное поле.

Рис. 3

В диамагнетиках молекулы не обладают собственным магнитным полем. Под действием внешнего магнитного поля в атомах и молекулах поле токов намагниченности направлено противоположно внешнему полю, поэтому модуль вектора магнитной индукции $ \boldsymbol{\vec{B}}$ результирующего поля будет меньше модуль вектора магнитной индукции $ \boldsymbol{{\vec{B}}_{0}} $ внешнего поля.

Вещества, в которых внешнее магнитное поле усиливается в результате сложения с магнитными полями электронных оболочек атомов вещества из-за ориентации атомных магнитных полей в направлении внешнего магнитного поля, называются парамагнетиками (µ > 1).

Парамагнетики очень слабо усиливают внешнее магнитное поле. Магнитная проницаемость парамагнетиков отличается от единицы лишь на доли процента. Например, магнитная проницаемость платины равна 1,00036. Из – за очень малых значений магнитной проницаемости парамагнетиков и диамагнетиков их влияние на внешнее поле или воздействие внешнего поля на парамагнитные или диамагнитные тела очень трудно обнаружить. Поэтому в обычной повседневной практике, в технике парамагнитные и диамагнитные вещества рассматриваются как немагнитные, то есть вещества, не изменяющие магнитное поле и не испытывающие действия со стороны магнитного поля. Примерами парамагнетиков являются натрий, кислород, алюминий (μ = 1,00023).

В парамагнетиках молекулы обладают собственным магнитным полем. В отсутствии внешнего магнитного поля из-за теплового движения вектора индукций магнитных полей атомов и молекул ориентированы хаотически, поэтому их средняя намагниченность равна нулю (рис. 4, а). При наложении внешнего магнитного поля на атомы и молекулы начинает действовать момент сил, стремящийся повернуть их так, чтобы их поля были ориентированы параллельно внешнему полю. Ориентация молекул парамагнетика приводит к тому, что вещество намагничивается (рис. 4, б).

Рис. 4

Полной ориентации молекул в магнитном поле препятствует их тепловое движение, поэтому магнитная проницаемость парамагнетиков зависит от температуры. Очевидно, что с ростом температуры магнитная проницаемость парамагнетиков уменьшается.

Ферромагнетики

Вещества, значительно усиливающие внешнее магнитное поле, называются ферромагнетиками (никель, железо, кобальт и др.). Примерами ферромагнетиков являются кобальт, никель, железо (μ достигает значения 8·10 3).

Само название этого класса магнитных материалов происходит от латинского имени железа - Ferrum. Главная особенность этих веществ заключается в способности сохранять намагниченность в отсутствии внешнего магнитного поля, все постоянные магниты относятся к классу ферромагнетикам. Кроме железа ферромагнитными свойствами обладают его «соседи» по таблице Менделеева - кобальт и никель. Ферромагнетики находят широкое практическое применение в науке и технике, поэтому разработано значительное число сплавов, обладающих различными ферромагнитными свойствами.

Все приведенные примеры ферромагнетиков относятся к металлам переходной группы, электронная оболочка которых содержит несколько не спаренных электронов, что и приводит к тому, что эти атомы обладают значительным собственным магнитным полем. В кристаллическом состоянии благодаря взаимодействию между атомами в кристаллах возникают области самопроизвольной (спонтанной) намагниченности - домены. Размеры этих доменов составляют десятые и сотые доли миллиметра (10 -4 − 10 -5 м), что значительно превышает размеры отдельного атома (10 -9 м). В пределах одного домена магнитные поля атомов ориентированы строго параллельно, ориентация магнитных полей других доменов при отсутствии внешнего магнитного поля меняется произвольно (рис. 5).

Рис. 5

Таким образом, и в не намагниченном состоянии внутри ферромагнетика существуют сильные магнитные поля, ориентация которых при переходе от одного домена к другому меняется случайным хаотическим образом. Если размеры тела значительно превышают размеры отдельных доменов, то среднее магнитное поле, создаваемое доменами этого тела, практически отсутствует.

Если поместить ферромагнетик во внешнее магнитное поле B 0 , то магнитные моменты доменов начинают перестраиваться. Однако механического пространственного вращения участков вещества не происходит. Процесс перемагничивания связан с изменением движения электронов, но не с изменением положения атомов в узлах кристаллической решетки. Домены, имеющие наиболее выгодную ориентацию относительно направления поля, увеличивают свои размеры за счет соседних «неправильно ориентированных» доменов, поглощая их. При этом поле в веществе возрастает весьма существенно.

Свойства ферромагнетиков

1) ферромагнитные свойства вещества проявляются только тогда, когда соответствующее вещество находится в кристаллическом состоянии ;

2) магнитные свойства ферромагнетиков сильно зависят от температуры, так как ориентации магнитных полей доменов препятствует тепловое движение. Для каждого ферромагнетика существует определенная температура, при котором доменная структура полностью разрушается, и ферромагнетик превращается в парамагнетик. Это значение температуры называется точкой Кюри . Так для чистого железа значение температуры Кюри приблизительно равно 900°C;

3) ферромагнетики намагничиваются до насыщения в слабых магнитных полях. На рисунке 6 показано, как изменяется модуль индукции магнитного поля B в стали с изменением внешнего поля B 0 :

Рис. 6

4) магнитная проницаемость ферромагнетика зависит от внешнего магнитного поля (рис. 7).

Рис. 7

Это объясняется тем, что вначале с увеличением B 0 магнитная индукция B растет сильнее, а, следовательно, μ будет увеличиваться. Затем при значении магнитной индукции B" 0 наступает насыщение (μ в этот момент максимальна) и при дальнейшем увеличении B 0 магнитная индукция B 1 в веществе перестает изменяться, а магнитная проницаемость уменьшается (стремится к 1):

$$\boldsymbol{\mu = \frac B{B_0} = \frac {B_0 + B_1}{B_0} = 1 + \frac {B_1}{B_0};} $$

5) у ферромагнетиков наблюдается остаточная намагниченность. Если, например, ферромагнитный стержень поместить в соленоид, по которому проходит ток, и намагнитить до насыщения (точка А ) (рис. 8), а затем уменьшать ток в соленоиде, а вместе с ним и B 0 , то можно заметить, что индукция поля в стержне в процессе его размагничивания остается все время большей, чем в процессе намагничивания. Когда B 0 = 0 (ток в соленоиде выключен), индукция будет равна B r (остаточная индукция). Стержень можно вынуть из соленоида и использовать как постоянный магнит. Чтобы окончательно размагнитить стержень, нужно пропустить по соленоиду ток противоположного направления, т.е. приложить внешнее магнитное поле с противоположным направлением вектора индукции. Увеличивая теперь по модулю индукцию этого поля до B oc , размагничивают стержень (B = 0).

  • Модуль B oc индукции магнитного поля, размагничивающего намагниченный ферромагнетик, называют коэрцитивной силой .

Рис. 8

При дальнейшем увеличении B 0 можно намагнитить стержень до насыщения (точка А" ).

Уменьшая теперь B 0 до нуля, получают опять постоянный магнит, но с индукцией B r (противоположного направления). Чтобы вновь размагнитить стержень, нужно снова включить в соленоид ток первоначального направления, и стержень размагнитится, когда индукция B 0 станет равной B oc . Продолжая увеличивать я B 0 , снова намагничивают стержень до насыщения (точка А ).

Таким образом, при намагничивании и размагничивании ферромагнетика индукция B отстает от B 0. Это отставание называется явлением гистерезиса . Изображенная на рисунке 8 кривая называется петлей гистерезиса .

Гистерезис (греч. ὑστέρησις - «отстающий») - свойство систем, которые не сразу следуют за приложенными силам.

Вид кривой намагничивания (петли гистерезиса) существенно различается для различных ферромагнитных материалов, которые нашли очень широкое применение в научных и технических приложениях. Некоторые магнитные материалы имеют широкую петлю с высокими значениями остаточной намагниченности и коэрцитивной силы, они называются магнитно-жесткими и используются для изготовления постоянных магнитов. Для других ферромагнитных сплавов характерны малые значения коэрцитивной силы, такие материалы легко намагничиваются и перемагничиваются даже в слабых полях. Такие материалы называются магнитно-мягкими и используются в различных электротехнических приборах - реле, трансформаторах, магнитопроводах и др.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C.330- 335.
  2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. шк. с рус. яз. обучения / В. В. Жилко, А.В. Лавриненко, Л. Г. Маркович. - Мн.: Нар. асвета, 2002. - С. 291-297.
  3. Слободянюк А.И. Физика 10. §13 Взаимодействие магнитного поля с веществом

Примечания

  1. Рассматриваем направление вектора индукции магнитного поля только в середине контура.

6. МАГНИТНЫЕ МАТЕРИАЛЫ

Все вещества являются магнетиками и намагничиваются во внешнем магнитном поле.

По магнитным свойствам материалы подразделяются на слабомагнитные (диамагнетики и парамагнетики ) и сильномагнитные (ферромагнетики и ферримагнетики ).

Диамагнетики μ r < 1, значение которой не зависит от напряженности внешнего магнитного поля. Диамагнетиками являются вещества, атомы (молекулы) которых в отсутствие намагничивающего поля имеют магнитный момент равный нулю: водород, инертные газы, большинство органических соединений и некоторые металлы (Cu , Zn , Ag , Au , Hg ), а также Вi , Gа , Sb .

Парамагнетики – вещества с магнитной проницаемостью μ r > 1, которая в слабых полях не зависит от напряженности внешнего магнитного поля. К парамагнетикам относятся вещества, атомы (молекулы) которых в отсутствие намагничивающего поля обладают магнитным моментом отличным от нуля: кислород, оксид азота, соли железа, кобальта, никеля и редкоземельных элементов, щелочные металлы, алюминий, платина.

У диамагнетиков и парамагнетиков магнитная проницаемость μ r близка к единице. Применение в технике в качестве магнитных материалов носит ограниченный характер.

У сильномагнитных материалов магнитная проницаемость значительно больше единицы (μ r >> 1) и зависит от напряженности магнитного поля. К ним относятся: железо, никель, кобальт и их сплавы, а также сплавы хрома и марганца, гадолиний, ферриты различного состава.

6.1. Магнитные характеристики материалов

Магнитные свойства материалов оценивают физическими величинами, называемыми магнитными характеристиками.

Магнитная проницаемость

Различают относительную и абсолютную магнитные проницаемости вещества (материала), которые между собой связаны соотношением

μ a = μ o ·μ , Гн/м

μ o – магнитная постоянная, μ o = 4π ·10 -7 Гн/м;

μ – относительная магнитная проницаемость (безразмерная величина).

Для описания свойств магнитных материалов применяют относительную магнитную проницаемость μ (чаще называемую магнитная проницаемость) , а для практических расчетов используют абсолютную магнитную проницаемость μ a , вычисляемую по уравнению

μ a = В /Н ,Гн/м

Н – напряженность намагничивающего (внешнего) магнитного поля, А/м

В магнитная индукция поля в магнетике.

Большая величина μ показывает, что материал легко намагничивается в слабых и сильных магнитных полях. Магнитная проницаемость у большинства магнетиков зависит от напряженности намагничивающего магнитного поля.

Для характеристики магнитных свойств широко используется безразмерная величина, называемая магнитной восприимчивостью χ .

μ = 1 + χ

Температурный коэффициент магнитной проницаемости

Магнитные свойства вещества зависят от температуры μ = μ (T ) .

Для описания характера изменения магнитных свойств с температурой используют температурный коэффициент магнитной проницаемости.

Зависимость магнитной восприимчивости парамагнетиков от температуры T описывается законом Кюри

где C - постоянная Кюри .

Магнитные характеристики ферромагнетиков

Зависимость магнитных свойств ферромагнетиков имеет более сложный характер, показанный на рисунке, и достигает максимума при температуре близкой к Q к .

Температура, при которой магнитная восприимчивость резко снижается, почти до нуля, носит название температуры Кюри - Q к . При температурах выше Q к процесс намагничивания ферромагнетика нарушается из-за интенсивного теплового движения атомов и молекул и материал перестает быть ферромагнитным и становится парамагнетиком.

Для железа Q к = 768 ° C , для никеля Q к = 358 ° C , для кобальта Q к = 1131 ° C .

Выше температуры Кюри зависимость магнитной восприимчивости ферромагнетика от температуры T описывается законом Кюри-Вейса

Процесс намагничивания сильномагнитных материалов (ферромагнетиков) обладает гистерезисом . Если производить намагничивание размагниченного ферромагнетика во внешнем поле, то он намагничивается по кривой намагничивания B = B (H ) . Если затем, начиная с некоторого значения H начать уменьшать напряженность поля, то индукция B будет уменьшаться с некоторым запаздыванием (гистерезисом ) по отношению к кривой намагничивания. При увеличении поля противоположного направления ферромагнетик размагничивается, затем перемагничивается , и при новой смене направления магнитного поля может вернуться в исходную точку, откуда начинался процесс размагничивания. Получившаяся петля, изображенная на рисунке, называется петлей гистерезиса .

При некоторой максимальной напряженности Н м намагничивающего поля вещество намагничивается до состояния насыщения, индукция в котором достигает значения В Н , которое называется индукцией насыщения.

Остаточная магнитная индукция В О наблюдается в ферромагнитном материале, намагниченном до насыщения, при его размагничивании, когда напряженность магнитного поля равна нулю. Для размагничивания образца материала надо, чтобы напряженность магнитного поля изменила свое направление на обратное (- Н ). Напряженность поля Н К , при которой индукция равна нулю, называется коэрцитивной силой (удерживающая сила).

Перемагничивание ферромагнетика в переменных магнитных полях всегда сопровождается тепловыми потерями энергии, которые обусловлены потерями на гистерезис и динамическими потерями . Динамические потери связаны с вихревыми токами, индуцированными в объеме материала, и зависят от электрического сопротивления материала, уменьшаясь с ростом сопротивления. Потери на гистерезис W в одном цикле перемагничивания определяются площадью петли гистерезиса

и могут быть вычислены для единицы объема вещества по эмпирической формуле

Дж/м 3

где η – коэффициент зависящий от материала, B Н – максимальная индукция, достигаемая в течение цикла, n – показатель степени, равный в зависимости от материала 1,6 ¸ 2.

Удельные потери энергии на гистерезис Р Г потери, затраченные на перемагничивание единицы массы в единице объема материала за секунду.

где f – частота переменного тока, T – период колебаний.

Магнитострикция

Магнитострикция – явление изменения геометрических размеров и формы ферромагнетика при изменении величины магнитного поля, т.е. при намагничивании. Относительное изменение размеров материала Δ l / l может быть положительным и отрицательным. У никеля магнитострикция меньше нуля и достигает величины 0,004 %.

В соответствии с принципом Ле Шателье о противодействии системы влиянию внешних факторов, стремящихся изменить это состояние, механическая деформация ферромагнетика, приводящая к изменению его размера должна оказывать влияние на намагничивание этих материалов.

Если при намагничивании тело испытывает в данном направлении сокращение своих размеров, то приложение механического напряжения сжатия в этом направлении способствует намагничиванию, а растяжение – затрудняет намагничивание.

6.2. Классификация ферромагнитных материалов

Все ферромагнитные материалы по поведению в магнитном поле делятся на две группы.

Магнитомягкие с большой магнитной проницаемостью μ и малой величиной коэрцитивной силы Н К < 10 А /м. Они легко намагничиваются и размагничиваются. Обладают малыми потерями на гистерезис, т.е. узкой петлей гистерезиса.

Магнитные характеристики зависят от химической чистоты и степени искажения кристаллической структуры. Чем меньше примесей (С, Р , S, О, N ) , тем выше уровень характеристик материала, поэтому необходимо при производстве ферромагнетика их и оксиды удалять, и стараться не искажать кристаллическую структуру материала.

Магнитотвердые материалы – обладают большой Н К > 0,5 · МА/м и остаточной индукцией (В О ≥ 0,1Т). Им соответствует широкая петля гистерезиса. Они с большим трудом намагничиваются, зато могут несколько лет сохранять магнитную энергию, т.е. служить источником постоянного магнитного поля. Поэтому из них изготовляются постоянные магниты.

По составу все магнитные материалы делятся на :

· металлические;

· неметаллические;

· магнитодиэлектрики .

Металлические магнитные материалы - это чистые металлы (железо, кобальт, никель) и магнитные сплавы некоторых металлов.

К неметаллическим материалам относятся ферриты, получаемые из порошков оксидов железа и других металлов. Их прессуют и обжигают при 1300 – 1500 °С и они превращаются в твердые монолитные магнитные детали. Ферриты, как и металлические магнитные материалы, могут быть магнитомягкими и магнитотвердыми.

Магнитодиэлектрики это композиционные материалы из 60 – 80 % порошка магнитного материала и 40 – 20 % органического диэлектрика. Ферриты и магнитодиэлектрики имеют большое значение удельного электрического сопротивления (ρ = 10 ÷ 10 8 Ом·м), Высокое сопротивление этих материалов обеспечивает низкие динамические потери энергии в переменных электромагнитных полях и позволяет широко использовать их в высокочастотной технике.

6.3. Металлические магнитные материалы

6.3.1. Металлические магнитомягкие материалы

К металлическим магнитомягким материалам относятся карбонильное железо, пермаллои, альсиферы и низкоуглеродистые кремнистые стали.

Карбонильное железо получают термическим разложением жидкости пентакарбонила железа Fе ( СО ) 5 с получением частиц чистого порошкообразного железа:

Fе ( СО ) 5 → + 5 СО,

при температуре около 200 °С и давлении 15 МПа. Частицы железа имеют сферическую форму размером 1 – 10 мкм. Для освобождения от частиц углерода порошок железа подвергают термической обработке в среде Н 2 .

Магнитная проницаемость карбонильного железа достигает 20000, коэрцитивная сила составляет 4,5 ¸ 6,2 А /м. Применяют порошок железа для изготовления высокочастотных магнитодиэлектрических сердечников, в качестве наполнителя в магнитных лентах.

Пермаллои – пластичные железоникелевые сплавы. Для улучшения свойств вводят Мо, Сr , Сu , получая легированные пермаллои. Обладают высокой пластичностью, легко прокатываются в листы и ленты до 1 мкм.

Если содержание никеля в пермаллое 40 – 50 %, то он называется низконикелевым, если 60 – 80 % – высоконикелевым .

Пермаллои имеют высокий уровень магнитных характеристик, который обеспечивается не только составом и высокой химической чистотой сплава, но и специальной тепловой вакуумной обработкой. Пермаллои имеют очень высокий уровень начальной магнитной проницаемости от 2000 до 30000 (в зависимости от состава) в области слабых полей, который обусловлен низкой величиной магнитострикции и изотропностью магнитных свойств. Особенно высокие характеристики имеет супермаллой, начальная магнитная проницаемость которого имеет значение 100000, а максимальная достигает 1,5 · 10 6 при B = 0,3 Тл.

Пермаллои поставляют в виде лент, листов и прутков. Низконикелевые пермаллои применяют для изготовления сердечников дросселей, малогабаритных трансформаторов и магнитных усилителей, высоконикелевые пермаллоидля деталей аппаратуры, работающих на звуковых и сверхзвуковых частотах. Магнитные характеристики пермаллоев стабильны при –60 +60°С.

Альсиферы нековкие хрупкие сплавы состава Al – Si – Fe , состоящие из 5,5 – 13 % Аl , 9 – 10 % Si , остальное – железо. Альсифер близок по свойствам к пермаллою, но более дешев. Из него изготовляют литые сердечники, отливают магнитные экраны и другие полые детали с толщиной стенок не менее 2 – 3 мм. Хрупкость альсифера ограничивает области его применения. Используя хрупкость альсифера , его размалывают в порошок, который используется в качестве ферромагнитного наполнителя в прессованных высочастотных магнитодиэлектриках (сердечники, кольца).

Кремнистая низкоуглеродистая сталь (электротехническая сталь) – сплав железа и кремния (0,8 – 4,8 % Si ). Основной магнитомягкий материал массового применения. Она легко прокатывается в листы и ленты 0,05 – 1 мм и является дешевым материалом. Кремний, находящийся в стали в растворенном состоянии, выполняет две функции.

· Повышая удельное сопротивление стали, кремний вызывает снижение динамических потерь, связанных с вихревыми токами. Сопротивление повышается за счет образования кремнезема SiO 2 в результате протекания реакции

2 FeO + S i → 2 Fe + SiO 2 .

· Наличие кремния, растворенного в стали , способствует распаду цементита Fе 3 С – вредной примеси, снижающей магнитные характеристики, и выделению углерода в виде графита. При этом образуется чистое железо, рост кристаллов которого повышает уровень магнитных характеристик стали .

Введение кремния в сталь в количестве, превышающем 4,8 %, не рекомендуется, так как, способствуя улучшению магнитных характеристик, кремний резко повышает хрупкость стали и снижает ее механические свойства.

6.3.2. Металлические магнитотвердые материалы

Магнитотвердые материалы - это ферромагнетики с высокой коэрцитивной силой (более 1 кА/м) и большой величиной остаточной магнитной индукции В О . Применяются для изготовления постоянных магнитов.

Подразделяются в зависимости от состава, состояния и способа получения на :

· легированные мартенситные стали;

· литые магнитотвердые сплавы.

Легированные мартенситные стали эт о углеродистые стали и стали, легированные Сr , W, Со, Мо . Углеродистые стали быстро стареют и изменяют свои свойства, поэтому редко применяются для изготовления постоянных магнитов. Для изготовления постоянных магнитов используют легированные стали – вольфрамовую и хромистую (Н С ≈ 4800 А /м, В О ≈ 1 Т), которые изготавливаются в виде прутков с различной формой сечения. Кобальтовая сталь обладает более высокой коэрцитивной силой (Н С ≈ 12000 А /м, В О ≈ 1 Т) по сравнению с вольфрамовой и хромистой. Коэрцитивная сила Н С кобальтовой стали растет с увеличением содержания С о .

Литые магнитотвердые сплавы. Улучшенные магнитные свойства сплавов обусловлены специально подобранным составом и специальной обработкой – охлаждением магнитов после отливки в сильном магнитном поле, а также специальной многоступенчатой тепловой обработкой в виде закалки и отпуска в сочетании с магнитной обработкой, называемой дисперсионным твердением.

Для изготовления постоянных магнитов находят применение три основных группы сплавов:

· Железо – кобальт – молибденовый сплав типа ремаллой с коэрцитивной силой Н К = 12 – 18 кА/м.

· Группа сплавов:

§ медь – никель – железо;

§ медь – никель – кобальт;

§ железо – марганец, легированные алюминием или титаном;

§ железо – кобальт – ванадий (F е – Со – V ).

Сплав медь – никель – железо называется кунифе (Сu Ni - ). Сплав F е – Со – V (железо – кобальт - ванадий) называется викалой . Сплавы этой группы имеют коэрцитивную силу Н К = 24 – 40 кА/м. Выпускаются в виде проволоки и в листах.

· Сплавы системы железо – никель – алюминий (F е Ni Аl ), известные ранее под названием сплав альни . Сплавсодержит 20 - 33 % Ni + 11 – 17 % Al , остальное железо. Добавление в сплавы кобальта, меди, титана, кремния, ниобия улучшает их магнитные свойства, облегчает технологию изготовления, обеспечивает повторяемость параметров, улучшает механические свойства. Современная маркировка марки содержит буквы, обозначающие добавляемые металлы (Ю – алюминий, Н – никель, Д – медь, К - кобальт, Т – титан, Б – ниобий, С – кремний), цифры - содержание элемента, буква которого стоит перед цифрой, например, ЮНДК15.

Сплавы обладают высоким значением коэрцитивной силы Н К = 40 – 140 кА/м и большой запасенной магнитной энергией.

6.4. Неметаллические магнитные материалы. Ферриты

Ферриты представляют собой керамические ферромагнитные материалы с малой электронной электропроводностью. Низкая электропроводность в сочетании с высокими магнитными характеристиками позволяет широко использовать ферриты на высоких частотах.

Изготовляют ферриты из порошкообразной смеси, состоящей из окиси железа и специально подобранных окислов других металлов. Их прессуют, а затем спекают при высоких температурах. Общая химическая формула имеет вид:

МеО ·Fе 2 О 3 или МеFе 2 О 4 ,

где Ме символ двухвалентного металла.

Например,

ZnO · Fe 2 O 3 или

NiO · Fe 2 O 3 или NiFe 2 O 4

Ферриты обладают кубической решеткой типа шпинели MgOAl 2 O 3 - алюмината магния. Не все ферриты обладают магнитными свойствами. Наличие магнитных свойств св язано с расположением ионов металловв кубической решетке шпинели. Так система ZnFe 2 O 4 не обладает ферромагнитными свойствами.

Ферриты изготовляют по керамической технологии. Исходные порошкообразные окислы металлов измельчают в шаровых мельницах, прессуют и обжигают в печах. Спекшиеся брикеты размалывают в тонкодисперсный порошок, вводят пластификатор, например раствор поливинилового спирта. Из полученной массы прессуют ферритовые изделия – сердечники, кольца, которые обжигают на воздухе при 1000 – 1400 °С. Полученные твердые хрупкие изделия в основном черного цвета можно обрабатывать только шлифованием и полированием.

Магнитомягкие ферриты

Магнитомягкие ферриты широко применяют в области высоких частот электронной техники и приборостроении для изготовления фильтров, трансформаторов усилителей низких и высоких частот, антенн радиопередающих и радиоприемных устройств, импульсных трансформаторов, магнитных модуляторов. Промышленностью выпускаются следующие виды магнитомягких ферритов с широким спектром магнитных и электрических свойств: никель – цинковые, марганец – цинковые и литий – цинковые. Верхняя граничная частота применения феррита зависит от их состава и изменяется у разных марок ферритов от 100 кГц до 600 МГц, коэрцитивная сила составляет около 16 А /м.

Достоинством ферритов является стабильность магнитных характеристик, относительнаяпростота изготовления радиодеталей. Как все ферромагнитные материалы ферриты сохраняют свои магнитные свойства только до температуры Кюри, которая зависит от состава ферритов и колеблется в пределах от 45 ° до 950 °С.

Магнитотвердые ферриты

Для изготовления постоянных магнитов используют магнитотвердые ферриты, наибольшее применение имеют ферриты бария (ВаО ·6 Fе 2 О 3 ). Они имеют гексагональную кристаллическую структуру с большой Н К . Ферриты бария представляют собой поликристаллический материал. Могут быть изотропными - одинаковость свойств феррита во всех направлениях обусловлена тем, что кристаллические частицы ориентированы произвольно. Если в процессе прессования магнитов порошкообразную массу подвергнуть воздействию внешнего магнитного поля большой напряженности, то кристаллические частицы феррита будут ориентированы в одном направлении, и магнит будет являться анизотропным.

Бариевые ферриты отличаются хорошей стабильностью своих характеристик, но чувствительны к изменению температуры и механическим воздействиям. Магниты из бариевых ферритов дешевы.

6.5. Магнитодиэлектрики

Магнитодиэлектрики - это композиционные материалы, состоящие из мелкодисперсных частиц магнитомягкого материала, связанных друг с другом органическим или неорганическим диэлектриком. В качестве магнитомягких материалов применяют карбонильное железо, альсифер и некоторые сорта пермаллоев, измельченные до порошкообразного состояния.

В качестве диэлектриков применяют полистирол, бакелитовые смолы, жидкое стекло и др.

Назначение диэлектрика не только в том, чтобы соединить частицы магнитного материала, но и изолировать их друг от друга, а, следовательно, резко повысить величину удельного электрического сопротивления магнитодиэлектрика . Удельное электрическое сопротивление r магнитодиэлектриков составляет10 3 – 10 4 Ом × м

Магнитодиэлектрики применяют для изготовления сердечников высокочастотных узлов радиоаппаратуры. Процесс производства изделий проще, чем из ферритов, т.к. они не нуждаются в высокотемпературной тепловой обработке. Изделия из магнитодиэлектриков отличаются высокой стабильностью магнитных свойств, высоким классом чистоты поверхности и точностью размеров.

Наиболее высокими магнитными характеристиками обладают магнитодиэлектрики, наполнителем в которых служит молибденовый пермаллой или карбонильное железо.

Магнитная проницаемость - физическая величина , коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией texvc не найден; См. math/README - справку по настройке.): {B} и напряжённостью магнитного поля Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): {H} в веществе. Для разных сред этот коэффициент различен, поэтому говорят о магнитной проницаемости конкретной среды (подразумевая её состав, состояние, температуру и т. д.).

Впервые встречается в работе Вернера Сименса «Beiträge zur Theorie des Elektromagnetismus» («Вклад в теорию электромагнетизма») в 1881 году .

Обычно обозначается греческой буквой Невозможно разобрать выражение (Выполняемый файл texvc . Может быть как скаляром (у изотропных веществ), так и тензором (у анизотропных).

В общем, соотношение между магнитной индукцией и напряженностью магнитного поля через магнитную проницаемость вводится как

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \vec{B} = \mu\vec{H},

и Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu в общем случае здесь следует понимать как тензор, что в компонентной записи соответствует :

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ B_i = \mu_{ij}H_j

Для изотропных веществ соотношение:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \vec{B} = \mu\vec{H}

можно понимать в смысле умножение вектора на скаляр (магнитная проницаемость сводится в этом случае к скаляру).

Нередко обозначение Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu используется не так, как здесь, а именно для относительной магнитной проницаемости (при этом Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu совпадает с таковым в СГС).

Размерность абсолютной магнитной проницаемости в СИ такая же, как размерность магнитной постоянной, то есть Гн / или / 2 .

Относительная магнитная проницаемость в СИ связана с магнитной восприимчивостью χ соотношением

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu_r = 1 + \chi,

Классификация веществ по значению магнитной проницаемости

Подавляющее большинство веществ относятся либо к классу диамагнетиков (Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu \lessapprox 1 ), либо к классу парамагнетиков (Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu \gtrapprox 1 ). Но ряд веществ - (ферромагнетики), например железо , обладают более выраженными магнитными свойствами.

У ферромагнетиков вследствие гистерезиса , понятие магнитной проницаемости, строго говоря, неприменимо. Однако в определенном диапазоне изменения намагничивающего поля (чтобы можно было пренебречь остаточной намагниченностью, но до насыщения) можно в лучшем или худшем приближении всё же представить эту зависимость как линейную (а для магнитомягких материалов ограничение снизу может быть и не слишком практически существенно), и в этом смысле величина магнитной проницаемости бывает измерена и для них.

Магнитные проницаемости некоторых веществ и материалов

Магнитная восприимчивость некоторых веществ

Магнитная восприимчивость и магнитная проницаемость некоторых материалов

Medium Восприимчивость χ m
(объемная, СИ)
Проницаемость μ [Гн/м] Относительная проницаемость μ/μ 0 Магнитное поле Максимум частоты
Метглас (англ. Metglas ) 1,25 1 000 000 при 0.5 Тл 100 kHz
Наноперм (англ. Nanoperm ) 10×10 -2 80 000 при 0.5 Тл 10 kHz
Мю-металл 2,5×10 -2 20 000 при 0.002 Тл
Мю-металл 50 000
Пермаллой 1,0×10 -2 70 000 при 0.002 Тл
Электротехническая сталь 5,0×10 -3 4000 при 0.002 Тл
Феррит (никель-цинк) 2,0×10 -5 - 8,0×10 -4 16-640 100 kHz ~ 1 MHz[[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]]
Феррит (марганец-цинк) >8,0×10 -4 640 (и более) 100 kHz ~ 1 MHz
Сталь 8,75×10 -4 100 при 0.002 Тл
Никель 1,25×10 -4 100 - 600 при 0.002 Тл
Неодимовый магнит 1.05 до 1,2-1,4 Тл
Платина 1,2569701×10 -6 1,000265
Алюминий 2,22×10 -5 1,2566650×10 -6 1,000022
Дерево 1,00000043
Воздух 1,00000037
Бетон 1
Вакуум 0 1,2566371×10 -6 (μ 0) 1
Водород -2,2×10 -9 1,2566371×10 -6 1,0000000
Тефлон 1,2567×10 -6 1,0000
Сапфир -2,1×10 -7 1,2566368×10 -6 0,99999976
Медь -6,4×10 -6
or -9,2×10 -6
1,2566290×10 -6 0,999994
Вода -8,0×10 -6 1,2566270×10 -6 0,999992
Висмут -1,66×10 -4 0,999834
Сверхпроводники −1 0 0

См. также

Напишите отзыв о статье "Магнитная проницаемость"

Примечания

Отрывок, характеризующий Магнитная проницаемость

Мне было так его жаль!.. Но, к сожалению, помочь ему было не в моих силах. И мне, честно, очень хотелось узнать, чем же эта необыкновенная малышка ему помогла...
– Мы нашли их! – опять повторила Стелла. – Я не знала, как это сделать, но бабушка мне помогла!
Оказалось, что Гарольд, при жизни, даже не успел узнать, как страшно пострадала, умирая, его семья. Он был рыцарем-воином, и погиб ещё до того, как его город оказался в руках «палачей», как и предсказывала ему жена.
Но, как только он попал в этот, ему незнакомый, дивный мир «ушедших» людей, он сразу же смог увидеть, как безжалостно и жестоко поступила с его «единственными и любимыми» злая судьба. После он, как одержимый, целую вечность пытался как-то, где-то найти этих, самых ему дорогих на всём белом свете людей... И искал он их очень долго, больше тысячи лет, пока однажды какая-то, совершенно незнакомая, милая девочка Стелла не предложила ему «сделать его счастливым» и не открыла ту «другую» нужную дверь, чтобы наконец-то их для него найти...
– Хочешь, я покажу тебе? – опять предложила малышка,
Но я уже не была так уверена, хочу ли я видеть что-то ещё... Потому, что только что показанные ею видения ранили душу, и невозможно было от них так быстро избавиться, чтобы желать увидеть какое-то продолжение...
– Но ты ведь хочешь увидеть, что с ними случилось! – уверенно констатировала «факт» маленькая Стелла.
Я посмотрела на Гарольда и увидела в его глазах полное понимание того, что я только что нежданно-негаданно пережила.
– Я знаю, что ты видела... Я смотрел это много раз. Но они теперь счастливы, мы ходим смотреть на них очень часто... И на них «бывших» тоже... – тихо произнёс «грустный рыцарь».
И тут только я поняла, что Стелла, просто-напросто, когда ему этого хотелось, переносила его в его же прошлое, точно так же, как она сделала это только что!!! И она делала это почти играючи!.. Я даже не заметила, как эта дивная, светлая девчушка всё сильнее и сильнее стала меня к себе «привязывать», становясь для меня почти что настоящим чудом, за которым мне без конца хотелось наблюдать... И которую совершенно не хотелось покидать... Тогда я почти ещё ничего не знала и не умела, кроме того, что могла понять и научиться сама, и мне очень хотелось хотя бы чему-то у неё научиться, пока ещё была такая возможность.
– Ты ко мне, пожалуйста, приходи! – тихо прошептала вдруг погрустневшая Стелла, – ты ведь знаешь, что тебе ещё нельзя здесь оставаться... Бабушка сказала, что ты не останешься ещё очень, очень долго... Что тебе ещё нельзя умирать. Но ты приходи...
Всё вокруг стало вдруг тёмное и холодное, будто чёрные тучи вдруг затянули такой красочный и яркий Стеллин мир...
– Ой, не надо думать о таком страшном! – возмутилась девочка, и, как художник кисточкой по полотну, быстро «закрасила» всё опять в светлый и радостный цвет.
– Ну вот, так правда лучше? – довольно спросила она.
– Неужели это были просто мои мысли?.. – опять не поверила я.
– Ну, конечно же! – засмеялась Стелла. – Ты же сильная, вот и создаёшь по-своему всё вокруг.
– А как же тогда думать?.. – всё ещё никак не могла «въехать» в непонятное я.
– А ты просто «закройся» и показывай только то, что хочешь показать, – как само собой разумеющееся, произнесла моя удивительная подружка. – Бабушка меня так научила.
Я подумала, что видимо мне тоже пришла пора чуть-чуть «потрясти» свою «засекреченную» бабушку, которая (я почти была в этом уверена!) наверняка что-то знала, но почему-то никак не желала меня пока ничему учить...
– Так ты хочешь увидеть, что стало с близкими Гарольда? – нетерпеливо спросила малышка.
Желания, если честно, у меня слишком большого не было, так как я не была уверена, чего от этого «показа» можно ожидать. Но чтобы не обидеть щедрую Стеллу, согласилась.
– Я не буду тебе показывать долго. Обещаю! Но ты должна о них знать, правда же?.. – счастливым голоском заявила девчушка. – Вот, смотри – первым будет сын...

К моему величайшему удивлению, в отличие от виденного раньше, мы попали в совершенно другое время и место, которое было похожим на Францию, и по одежде напоминало восемнадцатый век. По широкой мощёной улице проезжал крытый красивый экипаж, внутри которого сидели молодые мужчина и женщина в очень дорогих костюмах, и видимо, в очень дурном настроении... Молодой человек что-то упорно доказывал девушке, а та, совершенно его не слушая, спокойно витала где-то в своих грёзах, чем молодого человека очень раздражала...
– Вот видишь – это он! Это тот же «маленький мальчик»... только уже через много, много лет, – тихонько прошептала Стелла.
– А откуда ты знаешь, что это точно он? – всё ещё не совсем понимая, спросила я.
– Ну, как же, это ведь очень просто! – удивлённо уставилась на меня малышка. – Мы все имеем сущность, а сущность имеет свой «ключик», по которому можно каждого из нас найти, только надо знать, как искать. Вот смотри...
Она опять показала мне малыша, сына Гарольда.
– Подумай о его сущности, и ты увидишь...
И я тут же увидела прозрачную, ярко светящуюся, на удивление мощную сущность, на груди которой горела необычная «бриллиантовая» энергетическая звезда. Эта «звезда» сияла и переливалась всеми цветами радуги, то уменьшаясь, то увеличиваясь, как бы медленно пульсируя, и сверкала так ярко, будто и вправду была создана из самых потрясающих бриллиантов.
– Вот видишь у него на груди эту странную перевёрнутую звезду? – Это и есть его «ключик». И если ты попробуешь проследить за ним, как по ниточке, то она приведёт тебя прямо к Акселю, у которого такая же звезда – это и есть та же самая сущность, только уже в её следующем воплощении.
Я смотрела на неё во все глаза, и видно заметив это, Стелла засмеялась и весело призналась:
– Ты не думай, что это я сама – это бабушка меня научила!..
Мне было очень стыдно чувствовать себя полной неумёхой, но желание побольше узнать было во сто крат сильнее любого стыда, поэтому я запрятала свою гордость как можно глубже и осторожно спросила:
– А как же все эти потрясающие «реальности», которые мы сейчас здесь наблюдаем? Ведь это чья-то чужая, конкретная жизнь, и ты не создаёшь их так же, как ты создаёшь все свои миры?
– О, нет! – опять обрадовалась возможности что-то мне объяснить малышка. – Конечно же, нет! Это ведь просто прошлое, в котором все эти люди когда-то жили, и я всего лишь переношу нас с тобой туда.
– А Гарольд? Как же он всё это видит?
– О, ему легко! Он ведь такой же, как я, мёртвый, вот он и может перемещаться, куда захочет. У него ведь уже нет физического тела, поэтому его сущность не знает здесь препятствий и может гулять, где ей захочется... так же, как и я... – уже печальнее закончила малышка.
Я грустно подумала, что то, что являлось для неё всего лишь «простым переносом в прошлое», для меня видимо ещё долго будет являться «загадкой за семью замками»... Но Стелла, как будто услышав мои мысли, тут же поспешила меня успокоить:
– Вот увидишь, это очень просто! Тебе надо только попробовать.
– А эти «ключики», они разве никогда не повторяются у других? – решила продолжить свои расспросы я.
– Нет, но иногда бывает кое-что другое...– почему-то забавно улыбаясь, ответила крошка. – Я в начале именно так и попалась, за что меня очень даже сильно «потрепали»... Ой, это было так глупо!..
– А как? – очень заинтересовавшись, спросила я.
Стелла тут же весело ответила:
– О, это было очень смешно! – и чуть подумав, добавила, – но и опасно тоже... Я искала по всем «этажам» прошлое воплощение своей бабушки, а вместо неё по её «ниточке» пришла совсем другая сущность, которая как-то сумела «скопировать» бабушкин «цветок» (видимо тоже «ключик»!) и, как только я успела обрадоваться, что наконец-то её нашла, эта незнакомая сущность меня безжалостно ударила в грудь. Да так сильно, что у меня чуть душа не улетела!..
– А как же ты от неё избавилась? – удивилась я.
– Ну, если честно, я и не избавлялась... – смутилась девочка. – Я просто бабушку позвала...
– А, что ты называешь «этажами»? – всё ещё не могла успокоиться я.
– Ну, это разные «миры» где обитают сущности умерших... В самом красивом и высоком живут те, которые были хорошими... и, наверное, самыми сильными тоже.
– Такие, как ты? – улыбнувшись, спросила я.
– О, нет, конечно! Я наверное сюда по ошибке попала. – Совершенно искренне сказала девчушка. – А знаешь, что самое интересное? Из этого «этажа» мы можем ходить везде, а из других никто не может попасть сюда... Правда – интересно?..
Да, это было очень странно и очень захватывающе интересно для моего «изголодавшегося» мозга, и мне так хотелось узнать побольше!.. Может быть потому, что до этого дня мне никогда и никто ничего толком не объяснял, а просто иногда кто-то что-то давал (как например, мои «звёздные друзья»), и поэтому, даже такое, простое детское объяснение уже делало меня необычайно счастливой и заставляло ещё яростнее копаться в своих экспериментах, выводах и ошибках... как обычно, находя во всём происходящем ещё больше непонятного. Моя проблема была в том, что делать или создавать «необычное» я могла очень легко, но вся беда была в том, что я хотела ещё и понимать, как я это всё создаю... А именно это пока мне не очень-то удавалось...

Если в описанных выше опытах вместо сердечника из железа брать сердечники из других материалов, то также можно обнаружить изменение магнитного потока. Естественнее всего ждать, что наиболее заметный эффект дадут материалы, подобные по своим магнитным свойствам железу, т. е. никель, кобальт и некоторые магнитные сплавы. Действительно, при введении в катушку сердечника из этих материалов увеличение магнитного потока оказывается довольно значительным. Иными словами, можно сказать, что магнитная проницаемость их велика; у никеля, например, может достигать значения 50, у кобальта 100. Все эти материалы с большими значениями объединяют в одну группу ферромагнитных материалов.

Однако и все остальные «немагнитные» материалы также оказывают некоторое влияние на магнитный поток, хотя влияние это значительно меньше, чем у материалов ферромагнитных. С помощью очень тщательных измерений можно это изменение обнаружить и определить магнитную проницаемость различных материалов. При этом, однако, нужно иметь в виду, что в опыте, описанном выше, мы сравнивали магнитный поток в катушке, полость которой заполнена железом, с потоком в катушке, внутри которой имеется воздух. Пока речь шла о таких сильно магнитных материалах, как железо, никель, кобальт, это не имело значения, так как наличие воздуха очень мало влияет на магнитный поток. Но при исследовании магнитных свойств других веществ, в частности самого воздуха, мы должны, конечно, вести сравнение с катушкой, внутри которой воздуха нет (вакуум). Таким образом, за магнитную проницаемость мы принимаем отношение магнитных потоков в исследуемом веществе и в вакууме . Иными словами, за единицу мы принимаем магнитную проницаемость для вакуума (если , то ).

Измерения показывают, что магнитная проницаемость всех веществ отлична от единицы, хотя в большинстве случаев это отличие очень мало. Но особенно замечательным оказывается тот факт, что у одних веществ магнитная проницаемость больше единицы, а у других она меньше единицы, т. е. заполнение катушки одними веществами увеличивает магнитный поток, а заполнение катушки другими веществами уменьшает этот поток. Первые из этих веществ называются парамагнитными (), а вторые – диамагнитными (). Как показывает табл. 7, отличие проницаемости от единицы как у парамагнитных, так и у диамагнитных веществ невелико.

Нужно особенно подчеркнуть, что для парамагнитных и диамагнитных тел магнитная проницаемость не зависит от магнитной индукции внешнего, намагничивающего поля, т. е. представляет собой постоянную величину, характеризующую данное вещество. Как мы увидим § 149, это не имеет места для железа и других сходных с ним (ферромагнитных) тел.

Таблица 7. Магнитная проницаемость для некоторых парамагнитных и диамагнитных веществ

Парамагнитные вещества

Диамагнитные вещества

Азот (газообразный)

Водород (газообразный)

Воздух (газообразный)

Кислород (газообразный)

Кислород (жидкий)

Алюминий

Вольфрам

Влияние парамагнитных и диамагнитных веществ на магнитный поток объясняется, так же как и влияние веществ ферромагнитных, тем, что к магнитному потоку, создаваемому током в обмотке катушки, присоединяется поток, исходящий из элементарных амперовых токов. Парамагнитные вещества увеличивают магнитный поток катушки. Это увеличение потока при заполнении катушки парамагнитным веществом указывает на то, что и в парамагнитных веществах под действием внешнего магнитного поля элементарные токи ориентируются так, что направление их совпадает с направлением тока обмотки (рис. 276). Небольшое отличие от единицы указывает лишь на то, что в случае парамагнитных веществ этот добавочный магнитный поток очень невелик, т. е. что парамагнитные вещества намагничиваются очень слабо.

Уменьшение магнитного потока при заполнении катушки диамагнитным веществом означает, что в этом случае магнитный поток от элементарных амперовых токов направлен противоположно магнитному потоку катушки, т. е. что в диамагнитных веществах под действием внешнего магнитного поля возникают элементарные токи, направленные противоположно токам обмотки (рис. 277). Малость отклонений от единицы и в этом случае указывает на то, что дополнительный поток этих элементарных токов невелик.

Рис. 277. Диамагнитные вещества внутри катушки ослабляют магнитное поле соленоида. Элементарные токи в них направлены противоположно току в соленоиде

Называемой магнитной проницаемостью. Абсолютная магнитная проницаемость среды - это отношение B к H. Согласно Международной системе единиц она измеряется в единицах, называемых 1 генри на метр.

Числовое значение ее выражается отношением ее величины к величине магнитной проницаемости вакуума и обозначается µ. Данная величина именуется относительной магнитной проницаемостью (или просто магнитной проницаемостью) среды. Как величина относительная, она не имеет единицы измерения.

Следовательно, относительная магнитная проницаемость µ - величина, показывающая, в какое число раз индукция поля данной среды меньше (или больше) индукции вакуумного магнитного поля.

При воздействии на вещество внешним магнитным полем оно становится намагниченным. Каким образом это происходит? По гипотезе Ампера, в каждом веществе постоянно циркулируют микроскопические электротоки, вызванные движением электронов по своим орбитам и наличием у них собственного В обычных условиях это движение неупорядочено, и поля «гасят» (компенсируют) друг друга. При помещении тела во внешнее поле происходит упорядочивание токов, и тело становится намагниченным (т. е. обладающим своим полем).

Магнитная проницаемость всех веществ различна. Исходя из ее величины, вещества подлежат делению на три большие группы.

У диамагнетиков величина магнитной проницаемости µ - чуть меньше единицы. Например, у висмута µ = 0,9998. К диамагнетикам относятся цинк, свинец, кварц, медь, стекло, водород, бензол, вода.

Магнитная проницаемость парамагнетиков чуть-чуть побольше единицы (у алюминия µ = 1,000023). Примеры парамагнетиков - никель, кислород, вольфрам, эбонит, платина, азот, воздух.

Наконец, к третьей группе принадлежит целый ряд веществ (в основном это металлы и сплавы), чья магнитная проницаемость значительно (на несколько порядков) превышает единицу. Эти вещества - ферромагнетики. В основном сюда относятся никель, железо, кобальт и их сплавы. Для стали µ = 8∙10^3, для сплава никеля с железом µ=2.5∙10^5. Ферромагнетики обладают свойствами, отличающими их от других веществ. Во-первых, они обладают остаточным магнетизмом. Во-вторых, их магнитная проницаемость находится в зависимости от величины индукции внешнего поля. В-третьих, для каждого из них существует определенный порог температуры, называемый точкой Кюри , при котором он теряет ферромагнитные свойства и становится парамагнетиком. Для никеля точка Кюри - 360°C, для железа - 770°C.

Свойства ферромагнетиков определяет не только магнитная проницаемость, но и величина I, именуемая намагниченностью данного вещества. Это сложная нелинейная функция магнитной индукции, рост намагниченности описывается линией, именуемой кривой намагниченности . При этом, достигнув определенной точки, намагниченность практически перестает расти (наступает магнитное насыщение ). Отставание величины намагниченности ферромагнетика от растущей величины индукции внешнего поля называется магнитным гистерезисом . При этом существует зависимость магнитных характеристик ферромагнетика не только от его состояния в настоящий момент, но и от его предшествующей намагниченности. Графическое изображение кривой данной зависимости именуется петлей гистерезиса .

Благодаря своим свойствам, ферромагнетики повсеместно применяются в технике. Их используют в роторах генераторов и электродвигателей, при изготовлении сердечников трансформаторов и в производстве деталей электронно-вычислительных машин. ферромагнетиков используются в магнитофонах, телефонах, на магнитных лентах и других носителях.