Магнитное поле постоянного магнита определение. Магнитное поле и его характеристики - лекция

Магнитное поле постоянного магнита определение. Магнитное поле и его характеристики - лекция

См. также: Портал:Физика

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля .

Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля) . С математической точки зрения - векторное поле , определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал .

Магнитное поле можно назвать особым видом материи , посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом .

Магнитные поля являются необходимым (в контексте ) следствием существования электрических полей.

  • С точки зрения квантовой теории поля магнитное взаимодействие - как частный случай электромагнитного взаимодействия переносится фундаментальным безмассовым бозоном - фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) - виртуальным.

Источники магнитного поля

Магнитное поле создаётся (порождается) током заряженных частиц , или изменяющимся во времени электрическим полем , или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам).

Вычисление

В простых случаях магнитное поле проводника с током (в том числе и для случая тока, распределённого произвольным образом по объёму или пространству) может быть найдено из закона Био - Савара - Лапласа или теоремы о циркуляции (она же - закон Ампера). В принципе, этот способ ограничивается случаем (приближением) магнитостатики - то есть случаем постоянных (если речь идёт о строгой применимости) или достаточно медленно меняющихся (если речь идёт о приближенном применении) магнитных и электрических полей.

В более сложных ситуациях ищется как решение уравнений Максвелла .

Проявление магнитного поля

Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца , которая всегда направлена перпендикулярно к векторам v и B . Она пропорциональна заряду частицы q , составляющей скорости v , перпендикулярной направлению вектора магнитного поля B , и величине индукции магнитного поля B . В системе единиц СИ сила Лоренца выражается так:

в системе единиц СГС:

где квадратными скобками обозначено векторное произведение .

Также (вследствие действия силы Лоренца на движущиеся по проводнику заряженные частицы) магнитное поле действует на проводник с током . Сила, действующая на проводник с током называется силой Ампера . Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника заряды.

Взаимодействие двух магнитов

Одно из наиболее часто встречающихся в обычной жизни проявлений магнитного поля - взаимодействие двух магнитов : одинаковые полюса отталкиваются, противоположные притягиваются. Представляется заманчивым описать взаимодействие между магнитами как взаимодействие между двумя монополями , и с формальной точки зрения эта идея вполне реализуема и часто весьма удобна, а значит практически полезна (в расчётах); однако детальный анализ показывает, что на самом деле это не полностью правильное описание явления (наиболее очевидным вопросом, не получающим объяснения в рамках такой модели, является вопрос о том, почему монополи никогда не могут быть разделены, то есть почему эксперимент показывает, что никакое изолированное тело на самом деле не обладает магнитным зарядом; кроме того, слабостью модели является то, что она неприменима к магнитному полю, создаваемому макроскопическим током, а значит, если не рассматривать её как чисто формальный приём, приводит лишь к усложнению теории в фундаментальном смысле).

Правильнее будет сказать, что на магнитный диполь , помещённый в неоднородное поле, действует сила, которая стремится повернуть его так, чтобы магнитный момент диполя был сонаправлен с магнитным полем. Но никакой магнит не испытывает действия (суммарной) силы со стороны однородного магнитного поля. Сила, действующая на магнитный диполь с магнитным моментом m выражается по формуле :

Сила, действующая на магнит (не являющийся одиночным точечным диполем) со стороны неоднородного магнитного поля, может быть определена суммированием всех сил (определяемых данной формулой), действующих на элементарные диполи, составляющие магнит.

Впрочем, возможен подход, сводящий взаимодействие магнитов к силе Ампера, а сама формула выше для силы, действующей на магнитный диполь, тоже может быть получена, исходя из силы Ампера.

Явление электромагнитной индукции

Векторное поле H измеряется в амперах на метр (А/м) в системе СИ и в эрстедах в СГС . Эрстеды и гауссы являются тождественными величинами, их разделение является чисто терминологическим.

Энергия магнитного поля

Приращение плотности энергии магнитного поля равно:

H - напряжённость магнитного поля , B - магнитная индукция

В линейном тензорном приближении магнитная проницаемость есть тензор (обозначим его ) и умножение вектора на неё есть тензорное (матричное) умножение:

или в компонентах .

Плотность энергии в этом приближении равна:

- компоненты тензора магнитной проницаемости , - тензор, представимый матрицей, обратной матрице тензора магнитной проницаемости, - магнитная постоянная

При выборе осей координат совпадающими с главными осями тензора магнитной проницаемости формулы в компонентах упрощаются:

- диагональные компоненты тензора магнитной проницаемости в его собственных осях (остальные компоненты в данных специальных координатах - и только в них! - равны нулю).

В изотропном линейном магнетике:

- относительная магнитная проницаемость

В вакууме и:

Энергию магнитного поля в катушке индуктивности можно найти по формуле:

Ф - магнитный поток , I - ток, L - индуктивность катушки или витка с током.

Магнитные свойства веществ

С фундаментальной точки зрения, как это было указано выше, магнитное поле может создаваться (а значит - в контексте этого параграфа - и ослабляться или усиливаться) переменным электрическим полем, электрическими токами в виде потоков заряженных частиц или магнитными моментами частиц.

Конкретные микроскопическая структура и свойства различных веществ (а также их смесей, сплавов, агрегатных состояний, кристаллических модификаций и т. д.) приводят к тому, что на макроскопическом уровне они могут вести себя достаточно разнообразно под действием внешнего магнитного поля (в частности, ослабляя или усиливая его в разной степени).

В связи с этим вещества (и вообще среды) в отношении их магнитных свойств делятся на такие основные группы:

  • Антиферромагнетики - вещества, в которых установился антиферромагнитный порядок магнитных моментов атомов или ионов : магнитные моменты веществ направлены противоположно и равны по силе.
  • Диамагнетики - вещества, намагничивающиеся против направления внешнего магнитного поля.
  • Парамагнетики - вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля.
  • Ферромагнетики - вещества, в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов
  • Ферримагнетики - материалы, у которых магнитные моменты вещества направлены противоположно и не равны по силе.
  • К перечисленным выше группы веществ в основном относятся обычные твердые или (к некоторым) жидкие вещества, а также газы. Существенно отличается взаимодействие с магнитным полем сверхпроводников и плазмы .

Токи Фуко

Токи Фуко́ (вихревые токи) - замкнутые электрические токи в массивном проводнике , возникающие при изменении пронизывающего его магнитного потока . Они являются индукционными токами , образующимися в проводящем теле либо вследствие изменения во времени магнитного поля, в котором оно находится, либо в результате движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или любую его часть. Согласно правилу Ленца , магнитное поле токов Фуко направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему эти токи .

История развития представлений о магнитном поле

Хотя магниты и магнетизм были известны гораздо раньше, изучение магнитного поля началось в 1269 году, когда французский ученый Пётр Перегрин (рыцарь Пьер из Мерикура) отметил магнитное поле на поверхности сферического магнита, применяя стальные иглы, и определил, что получающиеся линии магнитного поля пересекались в двух точках, которые он назвал «полюсами» по аналогии с полюсами Земли. Почти три столетия спустя, Уильям Гильберт Колчестер использовал труд Петра Перегрина и впервые определённо заявил, что сама Земля является магнитом. Опубликованная в 1600 году, работа Гилберта «De Magnete» , заложила основы магнетизма как науки.

Три открытия подряд бросили вызов этой «основе магнетизма». Во-первых, в 1819 году Ханс Кристиан Эрстед обнаружил, что электрический ток создает магнитное поле вокруг себя. Затем, в 1820 году, Андре-Мари Ампер показал, что параллельные провода, по которым идёт ток в одном и том же направлении, притягиваются друг к другу. Наконец, Жан-Батист Био и Феликс Савар в 1820 году открыли закон, названный законом Био-Савара-Лапласа , который правильно предсказывал магнитное поле вокруг любого провода, находящегося под напряжением.

Расширив эти эксперименты, Ампер издал свою собственную успешную модель магнетизма в 1825 году. В ней он показал эквивалентность электрического тока в магнитах, и вместо диполей магнитных зарядов модели Пуассона, предложил идею, что магнетизм связан с постоянно текущими петлями тока. Эта идея объясняла, почему магнитный заряд не может быть изолирован. Кроме того, Ампер вывел закон, названный его именем , который, как и закон Био-Савара-Лапласа, правильно описал магнитное поля, создаваемое постоянным током, а также была введена теорема о циркуляции магнитного поля . Кроме того, в этой работе, Ампер ввел термин «электродинамика» для описания взаимосвязи между электричеством и магнетизмом.

Хотя подразумеваемая в законе Ампера сила магнитного поля движущегося электрического заряда не была явно заявлена, в 1892 году Хендрик Лоренц вывел её из уравнений Максвелла. При этом классическая теория электродинамики была в основном завершена.

Двадцатый век расширил взгляды на электродинамику, благодаря появлению теории относительности и квантовой механики. Альберт Эйнштейн в своей статье 1905 года, где была обоснована его теория относительности, показал, что электрические и магнитные поля являются частью одного и того же явления, рассматриваемого в разных системах отсчета. (См. Движущийся магнит и проблема проводника - мысленный эксперимент , который в конечном итоге помог Эйнштейну в разработке специальной теории относительности). Наконец, квантовая механика была объединена с электродинамикой для формирования квантовой электродинамики (КЭД).

См. также

  • Магнитная плёнка визуализатор

Примечания

  1. БСЭ. 1973, «Советская энциклопедия».
  2. В частных случаях магнитное поле может существовать и в отсутствие электрического поля, но вообще говоря магнитное поле глубоко взаимосвязано с электрическим как динамически (взаимное порождение переменными электрическим и магнитным полем друг друга), так и в том смысле, что при переходе в новую систему отсчёта магнитное и электрическое поле выражаются друг через друга, то есть вообще говоря не могут быть безусловно разделены.
  3. Яворский Б. М., Детлаф А. А. Справочник по физике: 2-е изд., перераб. - М .: Наука , Главная редакция физико-математической литературы, 1985, - 512 с.
  4. В СИ магнитная индукция измеряется в теслах (Тл), в системе СГС в гауссах .
  5. Точно совпадают в системе единиц СГС , в СИ - отличаются постоянным коэффициентом, что, конечно, не меняет факта их практического физического тождества.
  6. Самым важным и лежащим на поверхности отличием тут является то, что сила, действующая на движущуюся частицу (или на магнитный диполь) вычисляются именно через а не через . Любой другой физически корректный и осмысленный метод измерения также даст возможность измерить именно хотя для формального расчета иногда оказывается более удобным - в чём, собственно, и состоит смысл введения этой вспомогательной величины (иначе без неё вообще обходились бы, используя только
  7. Однако надо хорошо понимать, что ряд фундаментальных свойств этой «материи» в корне отличается от свойств того обычного вида «материи», который можно было бы обозначить термином «вещество».
  8. См. Теорема Ампера .
  9. Для однородного поля это выражение даёт нулевую силу, поскольку равны нулю все производные B по координатам.
  10. Сивухин Д. В. Общий курс физики. - Изд. 4-е, стереотипное. - М .: Физматлит ; Изд-во МФТИ, 2004. - Т. III. Электричество. - 656 с. - ISBN 5-9221-0227-3 ; ISBN 5-89155-086-5 .

О магнитном поле мы еще помним со школы, вот только что оно собой представляет, “всплывает” в воспоминаниях не у каждого. Давайте освежим то, что проходили, а возможно, расскажем что-то новенькое, полезное и интересное.

Определение магнитного поля

Магнитным полем называют силовое поле, которое воздействует на движущиеся электрические заряды (частицы). Благодаря этому силовому полю предметы притягиваются друг к другу. Различают два вида магнитных полей:

  1. Гравитационное – формируется исключительно вблизи элементарных частиц и вирируется в своей силе исходя из особенностей и строения этих частиц.
  2. Динамическое, вырабатывается в предметах с движущимися электрозарядами (передатчики тока, намагниченные вещества).

Впервые обозначение магнитному полю было введено М.Фарадеем в 1845 году, правда значение его было немного ошибочно, так как считалось, что и электрическое, и магнитное воздействие и взаимодействие осуществляется исходя из одного и того же материального поля. Позже в 1873 году, Д.Максвелл “презентовал” квантовую теорию, в которой эти понятия стали разделять, а ранее выведенное силовое поле было названо электромагнитным полем.

Как появляется магнитное поле?

Не воспринимаются человеческим глазом магнитные поля разных предметов, а зафиксировать его могут только специальные датчики. Источником появления магнитного силового поля в микроскопическом масштабе является движение намагниченных (заряженных) микрочастиц, которыми выступают:

  • ионы;
  • электроны;
  • протоны.

Их движение происходит благодаря спиновому магнитному моменту, который присутствует у каждой микрочастицы.


Магнитное поле, где его можно найти?

Как бы странно это ни звучало, но почти все окружающие нас предметы обладают собственным магнитным полем. Хотя в понятии многих магнитное поле имеется только у камушка под названием магнит, который притягивает к себе железные предметы. На самом деле, сила притяжения есть во всех предметах, только проявляется она в меньшей валентности.

Также следует уточнить, что силовое поле, называемое магнитным, появляется только при условии, что электрические заряды или тела движутся.


Недвижимые заряды имеют электрическое силовое поле (оно может присутствовать и в движущихся зарядах). Получается, что источниками магнитного поля выступают:

  • постоянные магниты;
  • подвижные заряды.

МАГНИТНОЕ ПОЛЕ

Магнитное поле - это особый вид материи, невидимый и неосязаемый для человека,
существующий независимо от нашего сознания.
Еще в древности ученые-мыслители догадывались, что вокруг магнита что-то существует.

Магнитная стрелка.

Магнитная стрелка – это устройство, необходимое при изучении магнитного действия электрического тока.
Она представляет из себя маленький магнит, установленный на острие иглы, имеет два полюса: северный и южный.Магнитная стрелка может свободно вращаться на кончике иглы.
Северный конец магнитной стрелки всегда показывает на "север".
Линия, соединяющая полюсы магнитной стрелки называется осью магнитной стрелки.
Аналогичная магнитная стрелка есть в любом компасе - приборе для ориентирования на местности.

Где возникает магнитное поле?

Опыт Эрстеда (1820г.) - показывает, как взаимодействует проводник с током и магнитная стрелка.

При замыкании эл цепи магнитная стрелка отклоняется от своего первоначального положения, при размыкании цепи магнитная стрелка возвращается в свое первоначальное положение.

В пространстве вокруг проводника с током (а в общем случае вокруг любого движущегося электрического заряда) возникает магнитное поле.
Магнитные силы этого поля действуют на стрелку и поворачивают ее.

В общем случае можно сказать,
что магнитное поле возникает вокруг движущихся электрических зарядов.
Электрический ток и магнитное поле неотделимы друг от друга.

ИНТЕРЕСНО, ЧТО...

Многие небесные тела – планеты и звезды - обладают собственными магнитными полями.
Однако наши ближайшие соседи- Луна, Венера и Марс - не имеют магнитного поля,
подобного земному.
___

Гильберт открыл, что, когда приближают к одному полюсу магнита кусок железа, другой полюс начинает притягивать сильнее. Эта идея была запатентована лишь через 250 лет после смерти Гильберта.

В первой половине 90-х годов, когда появились новые грузинские монеты - лари,
местные воры-карманники обзавелись магнитами,
т.к. металл, из которого делались эти монеты, хорошо притягивался магнитом!

Если взять долларовую купюру за угол и поднести к мощному магниту
(например, подковообразному), создающему неоднородное магнитное поле, бумажка
отклонится к одному из полюсов. Оказывается, краска долларовой купюры содержит соли железа,
обладающие магнитными свойствами, поэтому доллар притягивается к одному из полюсов магнита.

Если поднести к плотницкому пузырьковому уровню большой магнит, то пузырек сдвинется.
Дело в том, что пузырьковый уровень заполнен диамагнитной жидкостью. Когда такую жидкость помещают в магнитное поле, то внутри нее создается магнитное поле противоположного направления, и она выталкивается из поля. Поэтому пузырек в жидкости приближается к магниту.

О НИХ НАДО ЗНАТЬ!

Организатором магнитно-компасного дела в ВМФ России был известный ученый-девиатор,
капитан I –го ранга, автор научных трудов по теории компаса И.П. Белаванец.
Участник кругосветного путешествия на фрегате "Паллада" и участник Крымской войны 1853-56 гг. онвпервые в мире осуществил размагничивание судна (1863 г.)
и решил проблему установки компасов внутри железной подводной лодки.
В 1865 г. был назначен начальником первой в стране Компасной обсерватории в Кронштадте.

Наверное, нет человека, которому бы хоть раз не приходил в голову вопрос о том, что такое магнитное поле. За всю историю его пытались объяснить эфирными вихрями, причудами магнитными монополиями и многим другим.

Все мы знаем, что магниты, повернутые друг к другу одноименными полюсами, отталкиваются, а разноименными - притягиваются. Эта сила будет

Различаться в зависимости от того, на каком расстоянии две части находятся друг от друга. Получается, что описываемый предмет создает вокруг себя магнитный ореол. Вместе с тем при наложении же двух переменных полей, имеющих одинаковую частоту, когда одно сдвинуто в пространстве относительно другого, получается эффект, который принято называть «вращающееся магнитное поле».

Величина изучаемого предмета определяется силой, с которой магнит притягивается к другому или к железу. Соответственно, чем больше притяжение, тем больше поле. Силу можно измерить при помощи обычных этого на одну сторону кладется небольшой кусочек железа, а на другую - гирьки, предназначенные для уравновешивания металла к магниту.

Для более точного понимания предмета темы следует изучить поля:


Отвечая на вопрос о том, что такое магнитное поле, стоит сказать, что оно есть и у человека. В конце 1960 года, благодаря интенсивному развитию физики, был создан измерительный прибор «СКВИД». Его действие объясняется законами квантовых явлений. Представляет он собой чувствительный элемент магнитометров, используемых для исследования магнитного поля и таких

величин, например, как

«СКВИД» достаточно быстро стали употреблять для измерения полей, которые порождаются живыми организмами и, конечно, человеком. Это дало толчок для развития новых областей исследования, основанных на интерпретации информации, поставляемой таким прибором. Данное направление получило название "биомагнетизм".

Почему же раньше при определении того, что такое магнитное поле, не проводились исследования в данной области? Оказалось, что оно очень слабое у организмов, и его измерение является непростой физической задачей. Связано это с наличием огромного количества магнитных шумов в окружающем пространстве. Поэтому ответить на вопрос о том, что такое магнитное поле человека, и изучить его без использования специализированных мер защиты просто не представляется возможным.

Вокруг живого организма такой "ореол" возникает по трем основным причинам. Во-первых, благодаря ионным точкам, появляющимся как следствие электрической активности мембран клеток. Во-вторых, из-за наличия ферримагнитных мельчайших частиц, попавших случайно или введенных в организм. В-третьих, когда внешние магнитные поля накладываются, получается неоднородная восприимчивость различных органов, которая искажает наложенные сферы.

Магнитные поля возникают в природе и могут создаваться искусственно. Человек заметил их полезные характеристики, которые научился применять в повседневной жизни. Что же является источником магнитного поля?

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/02/1-17-768x560..jpg 795w" sizes="(max-width: 600px) 100vw, 600px">

Магнитное поле Земли

Как развивалось учение о магнитном поле

Магнитные свойства некоторых веществ были замечены еще в древности, но по-настоящему их изучение началось в средневековой Европе. Используя мелкие стальные иголки, ученый из Франции Перегрин обнаружил пересечение силовых магнитных линий в определенных пунктах – полюсах. Только через три века, руководствуясь этим открытием, Гилберт продолжил его изучение и впоследствии защищал свою гипотезу, что Земля обладает собственным магнитным полем.

Бурное развитие теории магнетизма началось с начала 19-го века, когда Ампер обнаружил и описал влияние электрического поля на возникновение магнитного, а открытие Фарадеем электромагнитной индукции установило и обратную взаимосвязь.

Что такое магнитное поле

Магнитное поле проявляется в силовом воздействии на электрозаряды, находящиеся в движении, или на тела, у которых имеется магнитный момент.

Источники магнитного поля:

  1. Проводники, по которым проходит электрический ток;
  2. Постоянные магниты;
  3. Изменяющееся электрическое поле.

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2018/02/2-18-600x307.jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/02/2-18-768x393..jpg 800w" sizes="(max-width: 600px) 100vw, 600px">

Источники магнитного поля

Первопричина возникновения магнитного поля идентична для всех источников: электрические микрозаряды – электроны, ионы или протоны обладают собственным магнитным моментом либо находятся в направленном движении.

Важно! Взаимно порождают друг друга электрические и магнитные поля, меняющиеся с течением времени. Эта взаимосвязь определяется уравнениями Максвелла.

Характеристики магнитного поля

Характеристиками магнитного поля являются:

  1. Магнитный поток, скалярная величина, определяющая, сколько силовых линий магнитного поля проходит через заданное сечение. Обозначается буквой F. Рассчитывается по формуле:

F = B x S x cos α,

где В – вектор магнитной индукции, S – сечение, α – угол наклона вектора к перпендикуляру, проведенному к плоскости сечения. Единица измерения – вебер (Вб);

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2018/02/3-17-600x450.jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/02/3-17.jpg 720w" sizes="(max-width: 600px) 100vw, 600px">

Магнитный поток

  1. Вектор магнитной индукции (В) показывает силу, действующую на зарядоносители. Он направлен в сторону северного полюса, куда указывает обычная магнитная стрелка. Количественно магнитную индукцию измеряют в теслах (Тл);
  2. Напряженность МП (Н). Определяется магнитной проницаемостью различных сред. В вакууме проницаемость принимается за единицу. Направление вектора напряженности совпадает с направлением магнитной индукции. Единица измерения – А/м.

Как представить магнитное поле

Легко видеть проявления магнитного поля на примере постоянного магнита. Он имеет два полюса, и в зависимости от ориентации два магнита притягиваются или отталкиваются. Магнитное поле характеризует процессы, происходящие при этом:

  1. МП математически описывается, как векторное поле. Оно может быть построено посредством многих векторов магнитной индукции В, каждый из которых направлен в сторону северного полюса стрелки компаса и имеет длину, зависящую от магнитной силы;
  2. Альтернативный способ представления заключается в использовании силовых линий. Эти линии никогда не пересекаются, нигде не начинаются и не останавливаются, образуя замкнутые петли. Линии МП объединяются в области с более частым расположением, где магнитное поле является самым сильным.

Важно! Плотность силовых линий указывает на прочность магнитного поля.

Хотя в действительности МП видеть нельзя, силовые линии легко визуализировать в реальном мире, расположив железные опилки в МП. Каждая частица ведет себя как крошечный магнит с северным и южным полюсом. Результатом является шаблон, похожий на силовые линии. Ощутить воздействие МП человек не способен.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/02/4-13.jpg 640w" sizes="(max-width: 600px) 100vw, 600px">

Силовые линии магнитного поля

Измерение магнитного поля

Так как это величина векторная, для измерения МП существует два параметра: сила и направление. Направление легко измерить с помощью компаса, соединенного с полем. Пример – компас, помещенный в магнитное поле Земли.

Измерение других характеристик значительно сложнее. Практические магнитометры появились только в 19-м веке. Большинство из них работают, используя силу, которую электрон чувствует при движении по МП.

Jpg?x15027" alt="Магнитометр" width="414" height="600">

Магнитометр

Очень точное измерение малых магнитных полей стало практически осуществимо с момента открытия в 1988 году гигантского магнитосопротивления в слоистых материалах. Это открытие в фундаментальной физике было быстро применено к магнитной технологии жесткого диска для хранения данных на компьютерах, приведшее к тысячекратному увеличению емкости хранилища всего за несколько лет.

В общепринятых системах измерений МП измеряется в тестах (Тл) или в гауссах (Гс). 1 Тл = 10000 Гс. Гаусс часто используется, потому что Тесла – слишком большое поле.

Интересно. Маленький магнит на холодильнике создает МП, равное 0,001 Тл, а магнитное поле Земли в среднем – 0,00005 Тл.

Природа возникновения магнитного поля

Магнетизм и магнитные поля являются проявлениями электромагнитной силы. Есть два возможных способа, как организовать энергозаряд в движении и, следовательно, магнитное поле.

Первый – это подсоединить провод к источнику тока, вокруг него образуется МП.

Важно! По мере увеличения тока (количества зарядов в движении) пропорционально увеличивается МП. При удалении от провода поле снижается в зависимости от расстояния. Это описывается законом Ампера.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/02/6-9.jpg 720w" sizes="(max-width: 600px) 100vw, 600px">

Закон Ампера

Некоторые материалы, имеющие более высокую магнитопроницаемость, способны концентрировать магнитные поля.

Поскольку магнитное поле – это вектор, необходимо определить его направление. Для обычного тока, протекающего через прямой провод, направление можно найти по правилу правой руки.

Чтобы использовать правило, надо представить, что провод обхвачен правой рукой, а большой палец указывает направление тока. Тогда четыре остальных пальца покажут направление вектора магнитной индукции вокруг проводника.

Jpeg?.jpeg 600w, https://elquanta.ru/wp-content/uploads/2018/02/7.jpeg 612w" sizes="(max-width: 600px) 100vw, 600px">

Правило правой руки

Второй способ создания МП – использование факта, что в некоторых веществах появляются электроны, обладающие собственным магнитным моментом. Так работают постоянные магниты:

  1. Хотя атомы часто имеют много электронов, они в основном соединяются так, что полное магнитное поле пары компенсируется. Говорят, что два электрона, спаренные таким образом, имеют противоположный спин. Поэтому, чтобы что-то намагнитить, нужны атомы, которые имеют один или несколько электронов с одинаковым спином. Например, железо имеет четыре таких электрона и подходит для изготовления магнитов;
  2. Миллиарды электронов, находящиеся в атомах, могут быть случайно ориентированы, и общего МП не будет, независимо от того, сколько неспаренных электронов имеет материал. Он должен быть стабильным при невысокой температуре, чтобы обеспечить общую предпочтительную ориентацию электронов. Высокая магнитопроницаемость обуславливает намагничивание таких веществ при определенных условиях вне влияния МП. Это ферромагнетики;
  3. Другие материалы могут проявлять магнитные свойства при наличии внешнего МП. Внешнее поле служит для выравнивания всех электронных спинов, которое исчезает после удаления МП. Это вещества – парамагнетики. Металл двери холодильника является примером парамагнетика.

Магнитное поле Земли

Землю можно представить в виде конденсаторных обкладок, заряд которых имеет противоположный знак: «минус» – у земной поверхности и «плюс» – в ионосфере. Между ними находится атмосферный воздух в качестве изоляционной прокладки. Гигантский конденсатор сохраняет постоянный заряд, благодаря влиянию земного МП. Пользуясь этими знаниями, можно создать схему получения электро энергии из магнитного поля Земли. Правда, в результате будут невысокие значения напряжения.

Нужно взять:

  • заземляющее устройство;
  • провод;
  • трансформатор Теслы, способный генерировать высокочастотные колебания и создавать коронный разряд, ионизируя воздух.

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2018/02/8-3-592x600.jpg?.jpg 592w, https://elquanta.ru/wp-content/uploads/2018/02/8-3.jpg 644w" sizes="(max-width: 592px) 100vw, 592px">

Катушка Теслы

Катушка Теслы будет выступать в роли эмиттера электронов. Вся конструкция соединяется вместе, причем для обеспечения достаточной разности потенциалов трансформатор должен быть поднят на значительную высоту. Таким образом, будет создана электрическая цепь, по которой будет протекать маленький ток. Получить большое количество электроэнергии, пользуясь этим устройством, невозможно.

Электричество и магнетизм доминируют во многих мирах, окружающих человека: от самых фундаментальных процессов в природе до ультрасовременных электронных устройств.

Видео