Предмет и метод физики, измерения, физические величины. Предмет физики. Почему изучение физики так важно для человечества

Предмет и метод физики, измерения, физические величины. Предмет физики. Почему изучение физики так важно для человечества

Измерение (физика)

Измерение - совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом средстве (средстве измерений). Получившееся значение называется числовым значением измеряемой величины, числовое значение совместно с обозначением используемой единицы называется значением физической величины. Измерение физической величины опытным путём проводится с помощью различных средств измерений - мер , измерительных приборов , измерительных преобразователей , систем, установок и т. д. Измерение физической величины включает в себя несколько этапов: 1) сравнение измеряемой величины с единицей; 2) преобразование в форму, удобную для использования (различные способы индикации).

  • Принцип измерений - физическое явление или эффект, положенное в основу измерений.
  • Метод измерений - приём или совокупность приёмов сравнения измеряемой физической величины с её единицей в соответствии с реализованным принципом измерений. Метод измерений обычно обусловлен устройством средств измерений.

Характеристикой точности измерения является его погрешность Примеры измерений

  1. В простейшем случае, прикладывая линейку с делениями к какой-либо детали, по сути сравнивают её размер с единицей, хранимой линейкой, и, произведя отсчёт, получают значение величины (длины, высоты, толщины и других параметров детали).
  2. С помощью измерительного прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, и проводят отсчёт.

В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая и не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам, например, Шкала Рихтера интенсивности землетрясений , Шкала Мооса - шкала твёрдости минералов

Наука, предметом изучения которой являются все аспекты измерений, называется метрологией .

Классификация измерений

По видам измерений

  • Прямое измерение - измерение, при котором искомое значение физической величины получают непосредственно.
  • Косвенное измерение - определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной.
  • Совместные измерения - проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними.
  • Совокупные измерения - проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях.

По методам измерений

  • Метод непосредственной оценки - метод измерений, при котором значение величины определяют непосредственно по показывающему средству измерений
  • Метод сравнения с мерой - метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.
    • Нулевой метод измерений - метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля.
    • Метод измерений замещением - метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины.
    • Метод измерений дополнением - метод сравнения с мерой, в котором значение измеряемой величины дополняется мерой этой же величины с таким расчетом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению
    • Дифференциальный метод измерений - метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами

По назначению

Технические и метрологические измерения

По точности

Детерминированные и случайные

По отношению к изменению измеряемой величины

Статические и динамические

По числу измерений

Однократные и многократные

По результатам измерений

  • Абсолютное измерение - измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.
  • Относительное измерение - измерение отношения величины к одноимённой величине, играющей роль единицы, или измерение изменения величины по отношению к одноимённой величине, принимаемой за исходную.

История

Единицы и системы измерения

Литература и документация

Литература

  • Кушнир Ф. В. Радиотехнические измерения : Учебник для техникумов связи - М.: Связь, 1980
  • Нефедов В. И., Хахин В. И., Битюков В. К. Метрология и радиоизмерения : Учебник для вузов - 2006
  • Н. С. Основы метрологии : практикум по метрологии и измерениям - М.: Логос, 2007

Нормативно-техническая документация

  • РМГ 29-99 ГСИ. Метрология. Основные термины и определения
  • ГОСТ 8.207-76 ГСИ. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения

Ссылки

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Измерение (физика)" в других словарях:

    Измерение: В математике (а также в теоретической физике): Количество измерений пространства определяет его размерность. Измерение любая из координат точки или точечного события. В физике: Измерение (физика) определение значения физической… … Википедия

    Представление свойств реальных объектов в виде числовой величины, один из важнейших методов эмпирического познания. В самом общем случае величиной называют все то, что может быть больше или меньше, что может быть присуще объекту в большей или… … Философская энциклопедия

    Содержание 1 Методы получения 1.1 Испарение жидкостей … Википедия

    Примеры разнообразных физических явлений Физика (от др. греч. φύσις … Википедия

    У этого термина существуют и другие значения, см. Измерение (значения). Квантовая механика … Википедия

    Исследование влияния, оказываемого на вещество очень высокими давлениями, а также создание методов получения и измерения таких давлений. История развития физики высоких давлений удивительный пример необычайно быстрого прогресса в науке,… … Энциклопедия Кольера

    Слабые измерения являются типом квантово механического измерения, где измеряемая система слабо связана с измерительным прибором. После слабого измерения указатель измерительного прибора оказывается смещённым на так называемую «слабую величину». В … Википедия

    Нейтронная физика раздел физики элементарных частиц, занимающийся исследованием нейтронов, их свойств и структуры (времени жизни, магнитного момента и др.), методов получения, а также возможностями использования в прикладных и научно… … Википедия

    Кибернетическая физика область науки на стыке кибернетики и физики, изучающая физические системы кибернетическими методами. Под кибернетическими методами понимаются методы решения задач управления, оценивания переменных и параметров… … Википедия

    У этого термина существуют и другие значения, см. Оператор. Квантовая механика … Википедия

Книги

  • Физика: колебания и волны. Лабораторный практикум. Учебное пособие для прикладного бакалавриата , Горлач В.В.. В учебном пособии представлены лабораторные работы по темам: вынужденные колебания, колебания груза на пружине, волны в упругой среде, измерение длины звуковой волны и скорости звука, стоячие…

Роль и значение измерений в науке и технике. Перспективы развития электроизмерительной техники

Измерения являются одним из основных средств познания природы, ее явлений и законов.

Особенно важную роль играют электрические измерения, так как теоретическая и прикладная электротехника имеет дело с различными электрическими и магнитными величинами и явлениями, которые не воспринимаются непосредственно органами чувств. Поэтому обнаружение присутствия этих величин, количественное их, а так же изучение электрических и магнитных явлений возможно только при помощи электроизмерительных приборов.

Быстро развивающейся областью измерительной техники является измерение электрических величин электрическими приборами и методами. Это объясняется возможностью непрерывного измерения и записью его результатов на расстоянии, высокой точностью, чувствительностью и другими положительными свойствами электрических методов и приборов измерения. В современном производстве соблюдение любого технологического процесса и автоматизация управления обеспечиваются применением измерительной техники и тесно связанной с ней автоматики.

Таким образом, электрические измерения обеспечивают рациональное ведение любых технологических процессов, бесперебойную работу электроустановок и т.п., а следовательно, улучшают технико-экономические показатели работы предприятия.

Начертите структурную схему электронно-лучевого осциллографа и опишите назначение основных его узлов

Канал вертикального отклонения электронно-лучевого осциллографа предназначен для передачи входного напряжения на вертикальные отклоняющиеся пластины. Он включает аттенюатор, обеспечивающий ослабление входного сигнала до уровня получения на экране картинки необходимого размера, линию задержки и усилитель. С выхода усилителя сигнал поступает на вертикальные отклоняющиеся пластины.

Входное устройство

Рис. 1 Структурная схема электронно-лучевого осциллографа

Канал горизонтального отклонения (канал развертки) служит для создания и передачи на горизонтально отклоняющие пластины напряжения, вызывающего горизонтальное перемещение луча, пропорционально времени.

Изображение формируется с помощью электронно-лучевой трубки, использующей электростатическое отклонение луча. В ней с помощью электронного прожектора формируется поток электронов в виде тонкого луча, который, достигая люминофора на внутренней поверхности экрана, вызывает его свечение. Отклонение луча по вертикали и горизонтали осуществляется с помощью двух пар пластин, на которые подаются отклоняющие напряжения. Исследуемое напряжение является функцией времени, и поэтому для его наблюдения необходимо, чтобы луч двигался по экрану в горизонтальном направлении пропорционально времени, а его перемещение по вертикали определялось входным исследуемым напряжением. Для движения луча по горизонтали к горизонтальным отклоняющимся пластинам прикладывается напряжение пилообразной формы, что обеспечивает перемещение луча слева направо с постоянной скоростью, быстрый возврат в начало экрана и очередное движение с постоянной скоростью слева направо. Исследуемое напряжение подается на вертикальные отклоняющие пластины, в результате положение луча в момент времени однозначно соответствует значению исследуемого сигнала в данный момент времени.

В осциллографе имеются два канала - канал вертикального (Y) и горизонтального (X) отклонения. Канал вертикального отклонения предназначен для передачи входного напряжения на вертикальные отклоняющие пластины. Он включает аттенюатор, обеспечивающий ослабление входного сигнала до уровня получения на экране картинки необходимого размера, линию задержки и усилитель. С выхода усилителя сигнал поступает на вертикальные отклоняющие пластины. Канал горизонтального отклонения (канал развертки) служит для создания и передачи на горизонтальные отклоняющие пластины напряжения вызывающего горизонтальное перемещение луча, пропорционально времени.

В осциллографах применяются несколько видов развертки, основная из которых образуется с помощью пилообразного напряжения. Чтобы линия развертки не мерцала при наблюдении, луч должен прочерчивать одну и ту же траекторию не менее 25…30 раз в секунду ввиду инерционной способности зрения человека.

Приведите схему и опишите, каким образом определяется место повреждения изоляции кабеля методом петли Муррея

Метод петли из жил кабеля - метод Муррея представляет собой использование схемы одинарного моста.

Для определения места пробоя между жилой и броней или землей концы б-б´ исправной и поврежденной жил кабеля закорачиваются. К двум другим концам а-а´ подключают магазины сопротивлений R и r А и гальванометр. Зажим, в котором соединены магазины резисторов, через батарею элементов соединен с землей.

Рис. 1 Схема метода петли из жил кабеля - метод Муррея

В результате имеем схему моста, равновесие которой определяется условием:

Определив r x , зная удельное сопротивление ρ материала жил кабеля и их сечение S, по формуле l x =r x S/ρ определяют расстояние от конца кабеля а´ до места повреждения изоляции.

При неизменном сечении жил кабеля r x и r можно заменить их выражением:

откуда определяется расстояние до места повреждения

Для проверки результата измерения производят второе аналогичное измерение, поменяв концы кабеля а и а´. При этом расстояние до места повреждения определяют по формуле:

где R´ и r´ A - значения сопротивлений плеч моста при втором измерении. Правильность результатов измерений подтверждается равенством l x + l y =2l

Определите напряжение на сопротивлении и наибольшую возможную относительную погрешность при его определении если напряжение на зажимах сети равно 220 В, а напряжение на сопротивлении R 1 = 180 В. Для измерения используются вольтметры класса точности 1,0 на 250 В

Из электротехники знаем:

U 2 = U - U 1 = 220 - 180 = 40 В

Наибольшая возможная относительная погрешность

где - относительная погрешность прибора, в нашем случае для класса точности 1,0 = 1,0%;

U н - номинальное напряжение вольтметра;

U - показание вольтметра.

Ответ: U 2 = 40 В, .

Измерительный прибор без шунта сопротивлением R A = 28 Ом имеет шкалу в 50 делений цена деления 0,01 A/дел. Определить цену деления этого прибора и предельную величину измеряемого тока при подключении шунта сопротивлением R Ш = 0,02 Ом.

Найдем шунтирующий множитель «р»

где r И - сопротивление прибора; r Ш - сопротивление шунта.

Найдем предельную величину измеряемого прибором тока

где W - количество делений прибора; N - цена деления

Найдем предельную величину измеряемого прибором тока при подключении шунта

где I max - предельная величина измеряемого прибором тока;

р - шунтирующий множитель

Найдем цену деления прибора при подключении шунта

где I′ max - предельная величина измеряемого прибором с шунтом тока; W - количество делений прибора

Ответ: А, А/дел.

На щитке счетчика написано: 220В, 5А, 1кВт·ч - 2000 оборотов диска. Вычислить номинальную постоянную счетчика, действительную постоянную, относительную погрешность, поправочный коэффициент, если при проверке счетчика на неизменное напряжение U = 220 В и неизменной величине тока I = 5 А диск сделал N = 37 оборотов за 60 с.

Определим номинальную постоянную счетчика

где W н - номинальное количество регистрируемой счетчиком энергии за N н оборотов диска

Определим действительную постоянную счетчика

где W - расчетное количество зарегистрированной энергии за N оборотов диска при проверке счетчика, при чем: W = U ∙ I ∙ t (U - неизменное напряжение подаваемое в течении времени - t при неизменной величине тока - I).

Определим относительную погрешность счетчика

где k н - номинальная постоянная счетчика; k - действительная постоянная счетчика, определенная при проверке.

Поправочный коэффициент будет равен

Ответ: Вт·ч/об, Вт·ч/об,

Номинальный ток амперметра 5А, класс точности его 1,5. Определить наибольшую возможную абсолютную погрешность.

Наибольшая возможная абсолютная погрешность:

где γ д - относительная погрешность амперметра, в нашем случае для класса точности 1,5 γ д = 1,5%; I н - номинальный ток амперметра.

Литература

  1. «Электрические измерения» В.С. Попов (М. 1974 г.)
  2. «Электротехника и электроника» под ред. проф. Б.И. Петленко М. 2003 г.
  3. Электрические измерения под редакцией Малиновского 1983 г.

Абсолютная система измерения физических величин

В последние два столетия в науке происходила бурная дифференциация научных дисциплин. В физике помимо классической динамики Ньютона появились электродинамика, аэродинамика, гидродинамика, термодинамика, физика различных агрегатных состояний, специальная и общая теории относительности, квантовая механика и многое другое. Произошла узкая специализация. Физики перестали понимать друг друга. Теорию суперструн, например, понимают лишь насколько сот человек во всем мире. Чтобы профессионально разбираться в теории суперструн, нужно заниматься только теорией суперструн, на остальное просто не хватит времени.

Но не следует забывать, что столь разные научные дисциплины изучают одну и ту же физическую реальность – материю. Наука, а особенно физика, вплотную подошла к тому рубежу, когда дальнейшее развитие возможно только путем интегрирования (синтеза) различных научных направлений. Рассматриваемая абсолютная система измерения физических величин – первый шаг в этом направлении.

В отличие от международной системы единиц СИ, имеющей 7 основных и 2 дополнительные единицы измерения, в абсолютной системе единиц измерения используется одна единица – метр (см. табл.). Переход к размерностям абсолютной системы измерения осуществляется по правилам:

Где: L, T и М – размерности длины, времени и массы соответственно в системе СИ.

Физическая сущность преобразований (1.1) и (1.2) состоит в том, что (1.1) отражает диалектическое единство пространства и времени, а из (1.2) следует, что массу можно измерять в квадратных метрах. Правда, />в (1.2) – это не квадратные метры нашего трехмерного пространства, а квадратные метры двумерного пространства. Двумерное пространство получается из трехмерного, если трехмерное пространство разогнать до скорости, близкой к скорости света. Согласно специальной теории относительности, из-за сокращения линейных размеров в направлении движения, куб превратится в плоскость.

Размерности всех остальных физических величин установлены на основании так называемой «пи-теоремы», утверждающей, что любая верная зависимость между физическими величинами с точностью до постоянного безразмерного множителя соответствует какому-либо физическому закону.

Чтобы ввести новую размерность какой-либо физической величины, нужно:

Подобрать формулу, содержащую эту величину, в которой размерности всех других величин известны;

Алгебраически найти из формулы выражение этой величины;

В полученное выражение подставить известные размерности физических величин;

Выполнить требуемые алгебраические действия над размерностями;

Принять полученный результат как искомую размерность.

«Пи-теорема» позволяет не только устанавливать размерности физических величин, но и выводить физические законы. Рассмотрим для примера задачу о гравитационной неустойчивости среды.

Известно, что как только длина волны звукового возмущения оказывается больше некоторого критического значения, силы упругости (давление газа) не в состоянии вернуть частицы среды в первоначальное состояние. Требуется установить зависимость между физическими величинами.

Имеем физические величины:

/>- длина фрагментов, на которые распадается однородная бесконечно протяженная среда;

/>- плотность среды;

A - скорость звука в среде;

G - гравитационная постоянная.

В системе СИ физические величины будут иметь размерность:

/>~ L; />~ />; a~/>; G ~ />

Из />/>, />и />составляем безразмерный комплекс:

где: />и /> - неизвестные показатели степеней.

Таким образом:

Так как П по определению величина безразмерная, то получаем систему уравнений:

Решением системы будет:

следовательно,

Откуда находим:

Формула (1.3) с точностью до постоянного безразмерного множителя описывает известный критерий Джинса. В точной формуле />.

Формула (1.3) удовлетворяет размерностям абсолютной системы измерения физических величин. Действительно, входящие в (1.3) физические величины имеют размерности:

/>~ />; />~ />; />~ />; />~ />

Подставив размерности абсолютной системы в (1.3), получим:

Анализ абсолютной системы измерения физических величин показывает, что механическая сила, постоянная Планка, электрическое напряжение и энтропия имеют одинаковую размерность: />. Это означает, что законы механики, квантовой механики, электродинамики и термодинамики – инвариантны.

Например, второй закон Ньютона и закон Ома для участка электрической цепи имеют одинаковую формальную запись:

/>~ />(1.4)

/>~ />(1.5)

При больших скоростях движения во второй закон Ньютона (1.4) вводится переменный безразмерный множитель специальной теории относительности:

Если такой же множитель ввести в закон Ома (1.5), то получим:

Согласно (1,6) закон Ома допускает появление сверхпроводимости, так как />при низких температурах может принимать значение, близкое к нулю. Если бы физика с самого начала применяла абсолютную систему измерения физических величин, то явление сверхпроводимости было бы предсказано вначале теоретически, а уже потом обнаружено экспериментально, а не наоборот.

Много разговоров ведется об ускоренном расширении Вселенной. Замерить ускорение расширения современные технические средства не могут. Применим для решения этой задачи абсолютную систему измерения физических величин.

PAGE_BREAK--

Вполне естественно предположить, что ускорение расширения Вселенной />зависит от расстояния между космическими объектами />и от скорости расширения Вселенной />. Решение задачи изложенным выше методом дает формулу:

Анализ физического смысла формулы (1.7) выходит за рамки обсуждаемой проблемы. Скажем лишь, что в точной формуле />.

Инвариантность физических законов позволяет уточнить физическую сущность многих физических понятий. Одно из таких «темных» понятий – понятие энтропия. В термодинамике механическому ускорению />~/>соответствует массовая плотность энтропии

где: S – энтропия;

m – масса системы.

Полученное выражение свидетельствует о том, что энтропию, вопреки существующему заблуждению, можно не только вычислить, но и измерить. Рассмотрим для примера металлическую спиральную пружину, которую можно считать механической системой атомов кристаллической решетки металла. Если сжать пружину, то кристаллическая решетка деформируется и создаст силы упругости, которые всегда можно измерить. Сила упругости пружины будет той самой механической энтропией. Если энтропию разделить на массу пружины, то получим массовую плотность энтропии пружины, как системы атомов кристаллической решетки.

Пружину можно представить и одним из элементов гравитационной системы, вторым элементом которой является наша Земля. Гравитационной энтропией такой системы будет сила притяжения, которую можно измерить несколькими способами. Разделив силу притяжения на массу пружины, получим гравитационную плотность энтропии. Гравитационная плотность энтропии – это ускорение свободного падения.

Наконец, в соответствии с размерностями физических величин в абсолютной системе измерения, энтропия газа – это сила, с которой газ давит на стенки сосуда, в который он заключен. Удельная газовая энтропия – это просто давление газа.

Важные сведения о внутреннем устройстве элементарных частиц можно получить, исходя из инвариантности законов электродинамики и аэро-гидродинамики, а инвариантность законов термодинамики и теории информации позволяет наполнить физическим содержанием уравнения теории информации.

Абсолютная система измерения физических величин опровергает широко распространенное заблуждение об инвариантности закона Кулона и закона всемирного тяготения. Размерность массы />~/>не совпадает с размерностью электрического заряда q ~/>, поэтому закон всемирного притяжения описывает взаимодействие двух сфер, или материальных точек, а закон кулона описывает взаимодействие двух проводников с током, или окружностей.

Используя абсолютную систему измерения физических величин, мы можем чисто формально вывести знаменитую формулу Эйнштейна:

/>~ />(1.8)

Между специальной теорией относительности и квантовой теорией нет непреодолимой пропасти. Формулу Планка можно получить тоже чисто формально:

Можно и далее демонстрировать инвариантность законов механики, электродинамики, термодинамики и квантовой механики, но рассмотренных примеров достаточно для того, чтобы понять, что все физические законы являются частными случаями некоторых общих законов пространственно-временных преобразований. Интересующиеся этими законами найдут их в книге автора « Теория многомерных пространств ». – М.: Ком Книга, 2007.

Переход от размерностей международной системы (СИ) к размерностям абсолютной системы (АС) измерения физических величин

1. Основные единицы

Наименование физической величины

Размерность в системе

Название физической величины

Килограмм

Сила электрического тока

Термодинамическая температура

Количество вещества

Сила света

2. Дополнительные единицы

Плоский угол

Телесный угол

Стерадиан

3. Производные единицы

3.1 Пространственно-временные единицы

Квадратный метр

Кубический метр

Скорость

Продолжение
--PAGE_BREAK----PAGE_BREAK--

Ампер на квадратный метр

Электрический заряд

Плотность электрического заряда линейная

Кулон на метр

Плотность электрического заряда поверхостная

Кулон на метр квадратный

Магнитодвижущая сила

Напряженность магнитного поля

Ампер на метр

Индуктивность

Магнитная постоянная

Генри на метр

Магнитный момент электрического тока

Ампер – квадратный метр

Намагниченность

Ампер на метр

Магнитное сопротивление

Ампер на вебер

3.5 Энергетическая фотометрия

Световой поток

Освешенность

Поток излучения

Энергетическая освещенность и светимость

Ватт на квадратный метр

Энергетическая яркость

Ватт на стерадиан квадратный метр

Спектральная плотность энергетической светимости:

По длине волны

По частоте

Ватт на м3

Когда я пишу тексты за своим столом, я могу протянуть руку вверх, чтобы включить лампу, или вниз, чтобы открыть ящик стола и достать ручку. Протянув руку вперёд, я касаюсь небольшой и странной на вид статуэтки, которую мне на счастье подарила сестра. Потянувшись назад, я могу похлопать чёрную кошку, крадущуюся у меня за спиной. Справа лежат заметки, сделанные во время исследований для статьи, слева - куча вещей, которые необходимо сделать (счета и корреспонденция). Вверх, вниз, вперёд, назад, вправо, влево - я управляю самим собой в моём личном космосе трёхмерного пространства. Невидимые оси этого мира налагает на меня прямоугольная структура моего кабинета, определяемая, как и большая часть западной архитектуры, тремя составленными вместе прямыми углами.

Наши архитектура, образование и словари сообщают нам о трёхмерности пространства. Оксфордский словарь английского языка так пространство: «непрерывная область или простор, свободная, доступная или не занятое ничем. Измерения высоты, глубины и ширины, в рамках которых существуют и движутся все вещи». [словарь Ожегова похожим образом: «Протяженность, место, не ограниченное видимыми пределами. Промежуток между чем-н., место, где что-н. вмещается.» / прим. перев. ]. В XVIII веке утверждал, что трёхмерное евклидово пространство является априорной необходимостью, и нам, пресыщенным изображениями, созданными компьютером, и видеоиграми, постоянно напоминают об этом представлении в виде вроде бы аксиоматичной прямоугольной системы координат. В точки зрения XXI века это кажется уже почти самоочевидным.

И всё же идея о жизни в пространстве, описываемом какой-то математической структурой - это радикальная инновация западной культуры, сделавшая необходимостью опровержение старинных верований по поводу природы реальности. Хотя зарождение современной науки часто описывают как переход к механизированному описанию природы, вероятно, более важным его аспектом - и однозначно более длительным - был переход к понятию о пространстве как о геометрической конструкции.

В прошлом веке задача описания геометрии пространства стала основным проектом теоретической физики, в котором эксперты, начиная с Альберта Эйнштейна, пытались описать все фундаментальные взаимодействия природы в виде побочных продуктов формы самого пространства. Хотя на локальном уровне нас приучили думать о пространстве как о трёхмерном, общая теория относительности описывает четырёхмерную Вселенную, а теория струн говорит о десяти измерениях - или об 11, если взять за основу её расширенный вариант, М-теорию. Существуют варианты этой теории с 26-ю измерениями, а недавно математики с энтузиазмом приняли , описывающую 24 измерения. Но что это за «измерения»? И что означает наличие десяти измерений в пространстве?

Чтобы прийти к современному математическому пониманию пространства, сначала необходимо подумать о нём как о некоей арене, которую может занимать материя. По меньшей мере, пространство необходимо представить себе, как нечто протяжённое. Такая идея, пусть и очевидная для нас, показалась бы еретической , чьи концепции представления физического мира преобладали в западном мышлении в поздней античности и в средневековье.

Строго говоря, аристотелева физика включала в себя не теорию пространства, а лишь концепцию места. Рассмотрим чашку чаю, стоящую на столе. Для Аристотеля чашка была окружённой воздухом, самим по себе представлявшим некую субстанцию. В его картине мира не было такой вещи, как пустое пространство - были только границы между веществами - чашкой и воздухом. Или столом. Для Аристотеля пространство, если вы хотите его так называть, было лишь бесконечно тонкой гранью между чашкой и тем, что её окружает. Баз протяжённости пространство не было чем-то таким, внутри чего может быть что-то другое.

С математической точки зрения, «измерение» - это всего лишь ещё одна координатная ось, ещё одна степень свободы, становящаяся символической концепцией, не обязательно связанной с материальным миром. В 1860-х пионер в области логики Огастес де Морган, чьи работы повлияли на Льюиса Кэрролла, подытожил эту становящуюся всё более абстрактной область, отметив, что математика - это чисто «наука о символах», и как таковая не обязана связываться с чем-либо, кроме самой себя. Математика, в каком-то смысле, это логика, свободно перемещающаяся на полях воображения.

В отличие от математиков, свободно играющих на полях идей, физики привязаны к природе, и, по крайней мере, в принципе, зависят от материальных вещей. Но все эти идеи приводят нас к освобождающей возможности - ведь если математика допускает количество измерений больше трёх, и мы считаем, что математика оказывается полезной для описания мира, откуда нам знать, что физическое пространство ограничено тремя измерениями? Хотя Галилей, Ньютон и Кант принимали длину, ширину и высоту как аксиомы, не может ли в нашем мире существовать больше измерений?

Опять-таки, идея Вселенной с количеством измерений больше трёх проникла в сознание общества через художественную среду, на этот раз - через литературные рассуждения, наиболее известной из которых служит работа математика “ ” (1884). Это очаровательная социальная сатира рассказывает историю скромного Квадрата, живущего на плоскости, к которому однажды в гости приходит трёхмерное существо лорд Сфера, выводящее его в великолепный мир трёхмерных тел. В этом рае объёмов Квадрат наблюдает за его трёхмерной версией, Кубом, и начинает мечтать о переходе в четвёртое, пятое и шестое измерение. Почему не гиперкуб? Или не гипер-гиперкуб, думает он?

К сожалению, в Флатландии Квадрата причисляют к лунатикам и запирают в сумасшедший дом. Одной из моралей истории, в отличие от более слащавых её экранизаций и адаптаций, является опасность, таящаяся в игнорировании социальных устоев. Квадрат, рассказывая о других измерениях пространства, рассказывает и о других изменениях бытия - он становится математическим чудаком.

В конце XIX и начале XX веков масса авторов (Герберт Уэллс, математик и автор НФ-романов , придумавший слово «тессеракт» для обозначения четырёхмерного куба), художников (Сальвадор Дали) и мистиков ( [русский оккультист, философ, теософ, таролог, журналист и писатель, математик по образованию / прим. перев. ] изучала идеи, связанные с четвёртым измерением и тем, чем может стать для человека встреча с ним.

Затем в 1905 году неизвестный тогда физик Альберт Эйнштейн опубликовал работу, описывающую реальный мир как четырёхмерный. В его «специальной теории относительности» время добавлялось к трём классическим измерениям пространства. В математическом формализме относительности все четыре измерения связаны вместе - так в наш лексикон вошёл термин «пространство-время». Такое объединение было не произвольным. Эйнштейн обнаружил, что используя этот подход, можно создать мощный математический аппарат, превосходящий физику Ньютона и позволяющий ему предсказывать поведение электрически заряженных частиц. Электромагнетизм можно полностью и точно описать только в четырёхмерной модели мира.

Относительность стала чем-то гораздо большим, чем просто ещё одной литературной игрой, особенно когда Эйнштейн расширил её от «специальной» до «общей». Многомерное пространство приобрело глубинное физическое значение.

В картине мира Ньютона материя движется через пространство во времени под влиянием естественных сил, в частности, гравитации. Пространство, время, материя и силы - различные категории реальности. С СТО Эйнштейн демонстрировал объединение пространства и времени, уменьшая количество фундаментальных физических категорий с четырёх до трёх: пространства-времени, материи и сил. ОТО делает следующий шаг, вплетая гравитацию в структуру самого пространства-времени. С четырёхмерной точки зрения, гравитация - всего лишь артефакт формы пространства.

Чтобы осознать эту примечательную ситуацию, представим её двумерный аналог. Представьте себе батут, нарисованный на поверхности декартовой плоскости. Теперь разместим на решётке шар для боулинга. Вокруг него поверхность натянется и исказится так, что некоторые точки отдалятся друг от друга сильнее. Мы исказили внутреннюю меру расстояния в пространстве, сделали её неровной. ОТО говорит, что именно такому искажению тяжёлые объекты, такие, как Солнце, подвергают пространство-время, и отклонение от декартового совершенства пространства приводит к появлению явления, которое мы ощущаем, как гравитацию.

В физике Ньютона гравитация появляется из ниоткуда, а у Эйнштейна она естественным образом возникает из внутренней геометрии четырёхмерного многообразия. Там, где многообразие наибольшим образом растягивается, или отходит от декартовой регулярности, гравитация ощущается сильнее. Это иногда называют «физикой резиновой плёнки». В ней огромные космические силы, удерживающие планеты на орбитах вокруг звёзд, а звёзды на орбитах в рамках галактик, являются ничем иным, как побочным эффектом искажённого пространства. Гравитация - это буквально геометрия в действии.

Если переход в четырёхмерное пространство помогает объяснить гравитацию, то будет ли какое-либо научное преимущество у пятимерного пространства? «Почему бы не попробовать?» - спросил в 1919 году молодой польский математик , размышляя над тем, что если Эйнштейн включил гравитацию в пространство-время, то, возможно, дополнительное измерение может схожим образом обращаться с электромагнетизмом, как с артефактом геометрии пространства-времени. Поэтому Калуца добавил дополнительное измерение к уравнениям Эйнштейна, и, к своему восторгу, обнаружил, что в пяти измерениях обе эти силы прекрасно оказываются артефактами геометрической модели.

Математика волшебным образом сходится, но в данном случае проблемой стало то, что дополнительное измерение никак не коррелировало с каким-либо определённым физическим свойством. В ОТО четвёртым измерением было время; в теории Калуцы оно не было чем-либо, что можно увидеть, почувствовать или на что можно указать: оно просто было в математике. Даже Эйнштейн разочаровался в такой эфемерной инновации. Что это? - спрашивал он; где оно?

Существует множество версий уравнений теории струн, описывающих десятимерное пространство, но в 1990-х математик из Института передовых исследований в Принстоне (старого логова Эйнштейна) показал, что всё можно немного упростить, если перейти к 11-мерной перспективе. Он назвал свою новую теорию «М-теория», и загадочно отказался объяснить, что обозначает буква «М». Обычно говорят, что она обозначает «мембрану», но кроме этого поступали и такие предложения, как «матрица», «мастер», «мистическая» и «монструозная».

Пока что у нас нет никаких свидетельств этих дополнительных измерений - мы всё ещё находимся в состоянии плавающих физиков, мечтающих о недоступных миниатюрных ландшафтах - но теория струн оказала мощное влияние на саму математику. Недавно разработки версии этой теории, имеющей 24 измерения, показали наличие неожиданной взаимосвязи между несколькими основными ответвлениями математики, что означает, что даже если теория струн не пригодится в физике, она станет полезным источником . В математике 24-мерное пространство особенное - там происходят волшебные вещи, к примеру, возможно упаковать сферы особенно элегантным образом - хотя маловероятно, что в реальном мире 24 измерения. Касательно мира, в котором мы живём и который мы любим, большинство специалистов по теории струн считают, что 10 или 11 измерений будет достаточно.

Внимания достойно ещё одно событие теории струн. В 1999 году (первая женщина, получившая пост в Гарварде в области теоретической физики) и (американский специалист по теоретической физике частиц индийского происхождения) , что дополнительное измерение может существовать на космологической шкале, на масштабах, описываемых теорией относительности. Согласно их теории «бран» (брана - это сокращение от мембраны) - то, что мы называем нашей Вселенной, может находиться в гораздо более крупном пятимерном пространстве, в чём-то вроде сверхвселенной. В этом сверхпространстве наша Вселенная может быть одной из целого ряда существующих вместе вселенных, каждая из которых представляет собой четырёхмерный пузырь на более широкой арене пятимерного пространства.

Сложно сказать, сможем ли мы когда-нибудь подтвердить теорию Рэндалл и Сандрума. Однако между этой идеей и зарёй современной астрономии уже проводят некоторые аналогии. 500 лет назад европейцы считали невозможным представить себе иные физические «миры» кроме нашего собственного, однако сейчас нам известно, что Вселенная заполнена миллиардами других планет, движущихся по орбитам вокруг миллиардов других звёзд. Кто знает, может когда-нибудь наши потомки смогут найти доказательства существования миллиардов других вселенных, у каждой из которых есть свои уникальные уравнения для пространства-времени.

Проект понимания геометрической структуры пространства - одно из характерных достижений науки, но может получиться так, что физики достигли конца этого пути. Оказывается, что Аристотель в каком-то смысле был прав - у идеи протяжённого пространства и правда есть логические проблемы. Несмотря на все необычайные успехи теории относительности, мы знаем, что её описание пространства не может быть итоговым, поскольку оно отказывает на квантовом уровне. За последние полвека физики безуспешно пытались объединить их понимание пространства на космологическом масштабе с тем, что они наблюдают на квантовом масштабе, и всё больше кажется, что такой синтез может потребовать радикально новой физики.

Эйнштейн после разработки ОТО провёл большую часть жизни, пытаясь «выразить все законы природы из динамики пространства и времени, низведя физику к чистой геометрии», как сказал недавно Робберт Дийкграаф , директор Института передовых исследований в Принстоне. «Для Эйнштейна пространство-время было естественным фундаментом бесконечной иерархии научных объектов». Как и у Ньютона, картина мира Эйнштейна ставит пространство во главу существование, делает его ареной, на которой всё происходит. Но на крохотных масштабах, где преобладают квантовые свойства, законы физики показывают, что такого пространства, к которому мы привыкли, может и не быть.

Некоторые физики-теоретики начинают высказывать мысль о том, что пространство может быть некоим возникающим явлением, следующим из чего-то более фундаментального, так, как температура возникает на макроскопическом масштабе в результате движения молекул. Как говорит Дийкграаф: «Текущая точка зрения считает пространство-время не точкой отсчёта, а итоговой финишной чертой, естественной структурой, появляющейся из сложности квантовой информации».

Ведущий сторонник новых способов представления пространства - космолог из Калтеха, недавно, что классическое пространство - это не «фундаментальная часть архитектуры реальности», и доказывающей, что мы неверно присваиваем такой особый статус его четырём, или 10, или 11 измерениям. Если Дийкграаф приводит аналогию с температурой, то Кэрролл предлагает нам рассмотреть «влажность», явление, проявляющееся оттого, что множество молекул воды собираются вместе. Отдельные молекулы воды не являются влажными, и свойство влажности появляется только тогда, когда вы соберёте множество их в одном месте. Точно так же, говорит он, пространство появляется из более базовых вещей на квантовом уровне.

Кэрролл пишет, что с квантовой точки зрения Вселенная «появляется в математическом мире с количеством измерений порядка 10 10 100 » - это десятка с гуголом нулей, или 10 000 и ещё триллион триллионов триллионов триллионов триллионов триллионов триллионов триллионов нулей. Сложно представить такое невозможно огромное количество, по сравнению с которым количество частиц во Вселенной оказывается совершенно незначительным. И всё же, каждое из них - отдельное измерение в математическом пространстве, описываемое квантовыми уравнениями; каждое - это новая «степень свободы», имеющаяся в наличии у Вселенной.

Даже Декарт был бы поражён тем, куда нас завели его рассуждения, и какая удивительная сложность скрывалась в таком простом слове, как «измерение».

Вообще говоря, весь менеджмент и процесс принятия решений в высшей степени зависят от информации о текущем состоянии и о его развитии во времени. Измерение - важнейший источник этой информации. Когда обсуждается совершенствование бизнес-процессов, измерение уровня показателей процесса - важный и необходимый элемент. Оно должно дать информацию о том, насколько хорошо этот процесс реализуется и насколько хороши результаты, которые он дает. Наличие значимой и относящейся к делу информации о процессах дает возможность определить отправную точку для начала процесса совершенствования, что в свою очередь позволяет: идентифицировать процессы или области, которые нуждаются в совершенствовании; составить представления о направлении развития с течением времени, т.е. о тренде показателей; сравнить уровень собственных показателей с уровнем показателей других организаций; оценить, дают ли начатые (или уже завершенные) проекты какой-либо результат или возможен ли результат в будущем? основываясь на этом, оценить, какими инструментами стоит пользоваться в будущем для совершенствования.

Смысл вышесказанного заключается в одной фразе: «Нельзяуправлять тем, чего нельзя измерить».
Вот важнейшие положения об измерениях. «Что измерил, то и получил». Это означает, что, как правило, именно тем участкам работы, на которых проводился мониторинг и выполнялись измерения, в первую очередь уделяется внимание, для них изыскиваются ресурсы; «Измерения определяют поведение». Это означает, что выполнение измерений часто ведет к переменам в системе, к ее приспособлению к новым ориентирам.
Ранее отмечалось, что обычно компании делятся на функциональные отделы. Доминирующее направление мониторинга показателей - оценка финансовых параметров, которые, как правило, берутся прямо из бухгалтерской отчетности. Проблема заключается в том, что такие способы мониторинга часто вступают в прямое противоречие с процессом совершенствования и мешают проведению соответствующих мероприятий. Дело в том, что многие усилия по совершенствованию бывает очень трудно адекватно оценить обычным инвестиционным анализом. Как правило затраты нужны как для обучения, так и собственно для проведения проекта. А вот результаты совершенствования в значительной степени имеют операционный характер. Например, это сокращение времени, снижение доли дефектов и т.д. Этим показателям бывает очень трудно дать оценку в финансовых терминах, так как результат таких улучшений проявляется не сразу, а по истечении некоторого времени, т.е. в будущем. Поэтому бывает трудно добиться выделения ресурсов и времени для проектов совершенствования.
В последние годы разработки были направлены на создание более оперативных систем измерения показателей. Однако общие вопросы измерения показателей и интенсификация этих процессов лежат за рамками этой книги. Для поддержки подхода к улучшениям, рассматриваемого в этой книге, надо создать систему со следующими элементами: Непрерывное измерение соответствующих аспектов показателей основных бизнес-процессов, примерно 15-30 процессов. Что подразумевается под «соответствующими аспектами» - обсуждается далее в этой главе. Все эти измеряемые показатели вместе должны образовывать законченную и целостную приборную панель, которую можно использовать для непрерывно го мониторинга показателей. В отличие от допотопного «рубильника» финансового отдела, который с большим запаздыванием то включает, то выключает красный свет, предупреждая о прибыли или об убытках, новая приборная панель будет содержать комплекс измерительных приборов, по которым можно оценить реальное положение дел (см. рис. 4.1). Эта приборная панель укажет на любые возникающие негативные тренды, покажет развитие во времени, поможет определить предпосылки для проведения конкретных усилий по совершенствованию.
Однако нужно быть осторожным и не переусердствовать с измерениями.

Рис. 4.1. Различные измерительные системы

Пример.
Компания Xerox (США) и компания Rank Xerox в Европе, каждая в своей стране, занимали передовые позиции в области разработки системы оперативного измерения показателей. Однако их усилия были так велики, что в этих компаниях возникла даже шутка: «Если нечто двигается, измерь это!» Это, конечно, привело к появлению избыточности информации, которой никто никогда не пользуется, и не потому, что она неинтересна, а потому что нет времени, чтобы ее просмотреть. По этой причине к любой информации стали относиться пренебрежительно, даже к информации действительно важной. Все мероприятия по измерению показателей потеряли свою актуальность.
В заключение этого раздела хотелось бы привести несколько «расхожих дилетантских правил» проведения измерений: Измерение - это не к добрутечение длительного времени, особенно начиная с эры Тейлора, с его изучением хронометража и движений, измерения часто были направлены на контроль сотрудников. Способы измерений, которые предлагаются в этой книге, имеют совсем другую направленность. Они проводятся не для того, чтобы искать козла отпущения, а для того, чтобы понять, настолько хорошо действуют процессы. Очень важно разделить измерение и оценку, которая делается на его основе. Само по себе измерение никогда никому не вредило. Это только интерпретация результатов измерений и ее использование могло иметь негативные последствия. Чем точнее, тем лучше1. Всемерное повышение точности измерений может быть актуальным для технических систем или для бухгалтерской отчетности, но не для измерения показателей. Часто цель измерения показателей - установление того, достигнуто улучшение или нет, а вовсе не определение точного уровня показателей. Вкладывание больших средств в развитие чрезмерно точных измерительных систем на самом деле может замедлить и затормозить практическое внедрение этих систем. Так что нужен более практичный подход.
Все решают только деньги1. Традиционное рассмотрение окружающего мира через призму денег, утверждение, что только деньги надежный показатель всего - оказалось главным препятствием на пути развития более «мягких» направлений в системах измерения. Такие показатели, как качество рабочей ситуации, способность продукта удовлетворить потребности покупателя и т.д. также доставляют ценную информацию. Их не стоит отбрасывать только потому, что для них нет соответствующего денежного эквивалента. Все должно быть строго по стандартам! Совсем наоборот. Стандарты часто рассматривают как верхний предел показателей. Хороший стандарт подразумевает, что пока вы с ним работаете, у вас нет нужды в совершенствовании.