Биологические ритмы человека. Как связаны биологические ритмы и работоспособность. Биологические ритмы

Биологические ритмы человека. Как связаны биологические ритмы и работоспособность. Биологические ритмы

Многие биологические процессы в природе протекают ритмично, т.е. разные состояния организма чередуются с достаточно четкой периодичностью. Примеры быстрых ритмов - сокращения сердца или дыхательные движения с периодом всего в несколько секунд. У других жизненно важных ритмов, например чередования бодрствования и сна, период составляет около суток. Если биологические ритмы синхронизированы с наступлением приливов и отливов (каждые 12,4 часа) или только одной из этих фаз (каждые 24,8 часа), их называют приливными. У лунных биологических ритмов период соответствует продолжительности лунного месяца, а у годичных - года. Сердечные сокращения и другие формы быстрой ритмичной активности, не коррелирующей с естественными изменениями в окружающей среде, обычно изучаются физиологией и в этой статье рассмотрены не будут.

Биологические ритмы интересны тем, что во многих случаях сохраняются даже при постоянстве условий среды. Такие ритмы называют эндогенными, т.е. «идущими изнутри»: хотя обычно они и коррелируют с ритмичными изменениями внешних условий, например чередованием дня и ночи, их нельзя считать прямой реакцией на эти изменения. Эндогенные биологические ритмы обнаружены у всех организмов, кроме бактерий. Внутренний механизм, поддерживающий эндогенный ритм, т.е. позволяющий организму не только чувствовать течение времени, но и измерять его промежутки, называется биологическими часами.

Работа биологических часов сейчас хорошо изучена, однако внутренние процессы, лежащие в ее основе, остаются загадкой. В 1950-х годах советский химик Б.Белоусов доказал, что даже в однородной смеси некоторые химические реакции могут периодически ускоряться и замедляться. Аналогичным образом, спиртовое брожение в дрожжевых клетках то активируется, то подавляется с периодичностью ок. 30 секунд. Каким-то образом эти клетки взаимодействуют друг с другом, так что их ритмы синхронизируются и вся дрожжевая суспензия дважды в минуту «пульсирует».

Считается, что такова природа всех биологических часов: химические реакции в каждой клетке организма протекают ритмично, клетки «подстраиваются» друг под друга, т.е. синхронизируют свою работу, и в результате пульсируют одновременно. Эти синхронизированные действия можно сравнить с периодическими колебаниями часового маятника.

Циркадианные ритмы . Большой интерес представляют биологические ритмы с периодом около суток. Они так и называются - околосуточными, циркадианными или циркадными - от лат. circa - около и dies - день.

Биологические процессы с циркадианной периодичностью весьма разнообразны. Например, три вида светящихся грибов усиливают и ослабляют свое свечение каждые 24 часа, даже если искусственно держать их при постоянном свете или в полной темноте. Ежесуточно изменяется свечение одноклеточной морской водоросли

Gonyaulax . У высших растений в циркадианном ритме протекают различные метаболические процессы, в частности фотосинтез и дыхание. У черенков лимона с 24-часовой периодичностью колеблется интенсивность транспирации. Особенно наглядные примеры - ежесуточные движения листьев и раскрывания-закрывания цветков.

Разнообразные циркадианные ритмы известны и у животных. Примером может служить близкое к актиниям кишечнополостное - морское перо (

Cavernularia obesa ), представляющее собой колонию из множества крошечных полипов. Морское перо живет на песчаном мелководье, втягиваясь в песок днем и разворачиваясь по ночам, чтобы питаться фитопланктоном. Этот ритм сохраняется в лаборатории при неизменных условиях освещения.

Четко работают биологические часы у насекомых. Например, пчелы знают, когда раскрываются определенные цветки, и навещают их ежедневно в одно и то же время. Пчелы также быстро усваивают, в какое время им выставляют на пасеке сахарный сироп.

У человека не только сон, но и многие другие функции подчинены суточному ритму. Примеры тому - повышение и понижение кровяного давления и выделения калия и натрия почками, колебания времени рефлекса, потливости ладоней и т.д. Особенно заметны изменения температуры тела: ночью она примерно на 1

° С ниже, чем днем. Биологические ритмы у человека формируются постепенно в ходе индивидуального развития. У новорожденного они довольно неустойчивы - периоды сна, питания и т.д. чередуются бессистемно. Регулярная смена периодов сна и бодрствования на основе 24 - 25 часового цикла начинает происходить только с 15-недельного возраста. Корреляция и «настройка» . Хотя биологические ритмы и эндогенны, они соответствуют изменениям внешних условий, в частности смене дня и ночи. Эта корреляция обусловлена т.н. «захватыванием». Например, циркадианные движения листьев у растений сохраняются в полной темноте лишь несколько суток, хотя другие цикличные процессы могут продолжать повторяться сотни раз несмотря на постоянство внешних условий. Когда выдерживаемые в темноте листья фасоли, наконец, прекратили расправляться и опускаться, достаточно короткой вспышки света, чтобы этот ритм восстановился и продержался еще несколько суток. У циркадианных ритмов животных и растений времязадающим стимулом обычно служит изменение освещенности - на рассвете и вечером. Если такой сигнал повторяется периодически и с частотой, близкой к свойственной данному эндогенному ритму, происходит точная синхронизация внутренних процессов организма с внешними условиями. Биологические часы «захватываются» окружающей периодичностью.

Изменяя наружный ритм по фазе, например включая свет на ночь и поддерживая днем темноту, можно «перевести» биологические часы так же, как обычные, хотя такая перестройка требует некоторого времени. Когда человек переезжает в другой часовой пояс, его ритм сна-бодрствования меняется со скоростью два-три часа в сутки, т.е. к разнице в 6 часов он приспосабливается только через два-три дня.

В определенных пределах можно перенастроить биологические часы и на цикл, отличающийся от 24 часов, т.е. заставить их идти с другой скоростью. Например, у людей, долгое время живших в пещерах с искусственным чередованием светлых и темных периодов, сумма которых существенно отличалась от 24 часов, ритм сна и других циркадианных функций подстраивался к новой продолжительности «суток», составлявшей от 22 до 27 часов, однако сильнее изменить его было уже невозможно. То же самое относится и к другим высшим организмам, хотя многие растения могут приспосабливаться к «суткам», продолжительность которых составляет целую часть обычных, например 12 или

8 часов. Приливные и лунные ритмы . У прибрежных морских животных часто наблюдаются приливные ритмы, т.е. периодические изменения активности, синхронизированные с подъемом и спадом воды. Приливы обусловлены лунным притяжением, и в большинстве регионов планеты происходит два прилива и два отлива в течение лунных суток (периода времени между двумя последовательными восходами Луны.) Поскольку Луна движется вокруг Земли в том же направлении, что и наша планета вокруг собственной оси, лунные сутки примерно на 50 минут длиннее солнечных, т.е. приливы наступают каждые 12,4 часа. Такой же период у приливных ритмов. Например, рак-отшельник прячется от света в отлив и выходит из тени в прилив; с наступлением прилива устрицы приоткрывают свои раковины, разворачивают щупальцы актинии и т.п. Многие животные, в том числе некоторые рыбы, в прилив потребляют больше кислорода. С подъемом и спадом воды синхронизированы изменения окраски манящих крабов.

Многие приливные ритмы сохраняются, иногда в течение нескольких недель, даже если держать животных в аквариуме. Значит, по сути своей они эндогенные, хотя в природе «захватываются» и подкрепляются изменениями во внешней среде.

У некоторых морских животных размножение коррелирует с фазами Луны и происходит обычно один раз (реже - дважды) на протяжении лунного месяца. Польза такой периодичности для вида очевидна: если яйца и сперма выбрасываются в воду всеми особями одновременно, шансы на оплодотворение достаточно высоки. Этот ритм эндогенный и, как считается, задается «пересечением» 24-часового циркадианного ритма с приливным, период которого 12,4 или 24,8 часа. Такое «пересечение» (совпадение) происходят с интервалами 14

- 15 и 29-30 суток, что соответствует лунному циклу.

Лучше всего известен и, вероятно, наиболее заметен среди приливных и лунных ритмов тот, что связан с размножением груниона - морской рыбы, мечущей икру на пляжах Калифорнии. В течение каждого лунного месяца наблюдаются два особенно высоких - сизигийных - прилива, когда Луна находится на одной оси с Землей и Солнцем (между ними или с противоположной от светила стороны). Во время такого прилива грунион нерестится, закапывая икринки в песок у самого края воды. В течение двух недель они развиваются практически на суше, куда не могут добраться морские хищники. В следующий сизигийный прилив, когда вода покрывает буквально нашпигованный ими песок, из всех икринок за несколько секунд вылупляются мальки, тут же уплывающие в море. Очевидно, что такая стратегия размножения возможна, только если взрослые грунионы чувствуют время наступления сизигийных приливов.

Менструальный цикл у женщин длится четыре недели, хотя не обязательно синхронизирован с фазами луны. Тем не менее, как показывают эксперименты, и в этом случае можно говорить о лунном ритме. Сроки менструаций легко сдвинуть, использовав, например, специальную программу искусственного освещения; однако они будут наступать с периодичностью, очень близкой к 29,5 суток, т.е. к лунному месяцу.

Низкочастотные ритмы . Биологические ритмы с периодами, намного превышающими один месяц, трудно объяснить на основе биохимических флуктуаций, которыми, вероятно, обусловлены ритмы циркадианные, и механизм их пока неизвестен. Среди таких ритмов наиболее очевидны годичные. Если деревья умеренного пояса пересадить в тропики, они некоторое время будут сохранять цикличность цветения, сбрасывания листьев и периода покоя. Рано или поздно эта ритмичность нарушится, продолжительность фаз цикла будет все более неопределенной и в конечном итоге исчезнет синхронизация биологических циклов не только разных экземпляров одного и того же вида, но даже разных ветвей одного дерева.

В тропических областях, где условия среды практически постоянны в течение всего года, местным растениям и животным часто свойственны долговременные биологические ритмы с периодом, отличным от 12 месяцев. Например, цветение может наступать каждые 8 или 18 месяцев. По-видимому, годичный ритм - это адаптация к условиям умеренной зоны.

Значение биологических часов . Биологические часы полезны организму прежде всего потому, что позволяют ему приспосабливать свою активность к периодическим изменениям в окружающей среде. Например, краб, избегающий света во время отлива, автоматически будет искать убежище, которое защитит его от чаек и других хищников, добывающих пищу на обнажившемся из-под воды субстрате. Чувство времени, присущее пчелам, координирует их вылет за пыльцой и нектаром с периодом раскрывания цветков. Аналогичным образом, циркадианный ритм подсказывает глубоководным морским животным, когда наступает ночь и можно подняться ближе к поверхности, где больше пищи.

Кроме того, биологические часы позволяют многим животным находить направление, пользуясь астрономическими ориентирами. Это возможно, только если известно одновременно положение небесного тела и время суток. Например, в Северном полушарии солнце в полдень находится точно на юге. В другие часы, чтобы определить южное направление, надо, зная положение солнца, сделать угловую поправку, зависящую от местного времени. Используя свои биологические часы, некоторые птицы, рыбы и многие насекомые регулярно выполняют такие «расчеты».

Не приходится сомневаться, что перелетным птицам, чтобы находить дорогу к мелким островам в океане, требуются навигационные способности. Вероятно, они используют свои биологические часы для определения не только направления, но и географических координат.

См. также ПТИЦЫ.

Проблемы, связанные с навигацией, встают не только перед птицами. Регулярные длительные миграции совершают тюлени, киты, рыбы и даже бабочки.

Практическое применение биологических ритмов . Рост и цветение растений зависят от взаимодействия между их биологическими ритмами и изменениями средовых факторов. Например, цветение стимулируется главным образом продолжительностью светлого и темного периодов суток на определенных стадиях развития растения. Это позволяет отбирать культуры, пригодные для тех или иных широт и климатических условий, а также выводить новые сорта. В то же время известны успешные попытки изменения биологических ритмов растений в нужном направлении. Например, птицемлечник аравийский (Ornithogallum arabicum ), цветущий обычно в марте, можно заставить распускаться под Рождество - в декабре.

С распространением дальних воздушных путешествий многие столкнулись с феноменом десинхронизации. Пассажир реактивного самолета, быстро пересекающий несколько часовых поясов, обычно испытывает чувство усталости и дискомфорта, связанное с «переводом» своих биологических часов на местное время. Сходная десинхронизация наблюдается у людей, переходящих из одной рабочей смены в другую. Большинство отрицательных эффектов обусловлено при этом присутствием в организме человека не одних, а многих биологических часов. Обычно это незаметно, поскольку все они «захватываются» одним и тем же суточным ритмом смены дня и ночи. Однако при сдвиге его по фазе скорость перенастройки различных эндогенных часов неодинакова. В результате сон наступает, когда температура тела, скорость выделения почками калия и другие процессы в организме еще соответствуют уровню бодрствования. Такое рассогласование функций в период адаптации к новому режиму ведет к повышенной утомляемости.

Накапливается все больше данных, свидетельствующих о том, что длительные периоды десинхронизации, например при частых перелетах из одного часового пояса в другой, вредны для здоровья, однако насколько велик этот вред, пока не ясно. Когда сдвига по фазе избежать нельзя, десинхронизацию можно свести к минимуму, правильно подобрав скорость наступления сдвига.

Биологические ритмы имеют очевидное значение для медицины. Хорошо известно, например, что восприимчивость организма к различным вредным воздействиям колеблется в зависимости от времени суток. В опытах по введению мышам бактериального токсина показано, что в полночь его смертельная доза выше, чем в полдень. Аналогичным образом изменяется чувствительность этих животных к алкоголю и рентгеновскому облучению. Восприимчивость человека тоже колеблется, однако в противофазе: его организм беззащитнее всего в полночь. Ночью смертность прооперированных больных втрое выше, чем днем. Это коррелирует с колебаниями температуры тела, которая у человека максимальна днем, а у мышей - ночью.

Такие наблюдения наводят на мысль, что лечебные процедуры следует согласовывать с ходом биологических часов, и определенные успехи здесь уже достигнуты. Трудность в том, что биологические ритмы человека, особенно больного, пока недостаточно исследованы. Известно, что при многих заболеваниях

- от рака до эпилепсии - они нарушаются; яркий тому пример - непредсказуемые колебания температуры тела у больных. Пока биологические ритмы и их изменения как следует не изучены, использовать их на практике, очевидно, нельзя. К этому стоит добавить, что в некоторых случаях десинхронизация биологических ритмов может быть не только симптомом болезни, но и одной из ее причин. ЛИТЕРАТУРА Биологические ритмы , тт. 1-2. М., 1984

Наука, изучающая ритмичность в биологии, возникла в конце XVIII века. Ее основателем считается немецкий врач Христофор Вильям Гуфелянд. С его подачи длительный период организма считались зависимыми исключительно от внешних цикличных процессов, в первую очередь от вращения Земли вокруг Солнца и собственной оси. Сегодня хронобиология пользуется популярностью. Согласно доминирующей в ней теории, причины биоритмов лежат как вне, так и внутри конкретного организма. Причем повторяющиеся во времени изменения свойственны не только отдельным особям. Они пронизывают все уровни биологических систем — от клетки до биосферы.

Ритмичность в биологии: определение

Таким образом, рассматриваемое свойство является одним из фундаментальных характеристик живой материи. Ритмичность в биологии можно определить как колебания интенсивности процессов и физиологических реакций. Она представляет собой периодические изменения состояния среды живой системы, возникающие под действием внешних и внутренних факторов. Также их называют синхронизаторами.

Биоритмы, не зависящие от внешних (действующих на систему снаружи) факторов, являются эндогенными. Экзогенные, соответственно, не откликаются на воздействие внутренних (действующих внутри системы) синхронизаторов.

Причины

Как уже отмечалось, на первых этапах формирования новой науки ритмичность в биологии считалась обусловленной лишь внешними факторами. На смену этой теории пришла гипотеза внутреннего детерминирования. В ней внешним факторам отводилась незначительная роль. Однако достаточно быстро исследователи пришли к пониманию высокого значения обоих типов синхронизаторов. Сегодня считается, что биологические эндогенные по своей природе, подвержены изменениям под воздействием внешней среды. Эта идея стоит в центре мультиосцилляторной модели регуляции подобных процессов.

Суть теории

Согласно этой концепции, эндогенные генетически запрограммированные колебательные процессы испытывают воздействие со стороны внешних синхронизаторов. Огромное число внутренних ритмических колебаний многоклеточного организма выстроено в определенном иерархическом порядке. В основе его поддержания лежат нейрогуморальные механизмы. Они согласовывают фазовые взаимоотношения различных ритмов: однонаправленные процессы протекают синхронно, а несовместимые работают в противофазе.

Всю эту деятельность трудно себе представить без некоего осциллятора (координатора). В рассматриваемой теории выделяют три взаимосвязанные регулирующие системы: эпифиз, гипофиз и надпочечники. Эпифиз считается наиболее древним.

Предположительно у организмов, стоящих на низких ступенях эволюционного развития, эпифиз играет главную роль. Выделяемый им мелатонин вырабатывается в темноте и распадается на свету. Фактически он сообщает всем клеткам о времени дня. При усложнении организации эпифиз начинает играть вторую роль, уступая первенство супрахиазматическим ядрам гипоталамуса. Вопрос о соотношении в деле регуляции биоритмов обеих структур до конца не решен. В любом случае, согласно теории, у них существует «помощник» — надпочечники.

Виды

Все биоритмы делятся на две основные категории:

    физиологические представляют собой колебания в работе отдельных систем организма;

    экологические, или адаптивные необходимы для приспособления к постоянно меняющимся условиям окружающей среды.

Также распространенной является классификация, предложенная хронобиологом Ф. Хальбергом. За основу разделения биологических ритмов он взял их длительность:

    колебания высокой частоты — от нескольких секунд до получаса;

    колебания средней частоты — от получаса до шести дней;

    колебания низкой частоты — от шести дней до года.

Процессы первого типа — это дыхание, сердцебиение, электрическая активность головного мозга и другая аналогичная ритмичность в биологии. Примеры колебаний средней частоты — это изменения в течение дня обменных процессов, режима сна и бодрствования. Третий включает сезонные, годичные и лунные ритмы.

Внешние по отношению к человеку синхронизаторы делятся на социальные и физические. Первые — это распорядок дня и различные нормы, принятые на производстве, в быту или обществе в целом. Физические синхронизаторы представлены сменой дня и ночи, напряженностью электромагнитных полей, колебаниями температур, влажности и так далее.

Десинхронизация

Идеальное состояние организма возникает тогда, когда внутренние биоритмы человека работают в соответствии с внешними условиями. К сожалению, так бывает не всегда. Состояние, когда происходит рассогласование внутренних ритмов и внешних синхронизаторов, называют десинхронозом. Он также существует в двух вариантах.

Внутренний десинхроноз — рассогласование процессов непосредственно в организме. Распространенный пример — нарушение ритмов сна и бодрствования. Внешний десинхроноз — это рассогласование внутренних биологических ритмов и условий среды. Подобные нарушения возникают, например, при перелете из одного часового пояса в другой.

Десинхроноз проявляется в виде изменения таких физиологических показателей, как артериальное давление. Часто он сопровождается повышенной раздражимостью, отсутствием аппетита, быстрой утомляемостью. По мнению хронобиологов, как уже говорилось выше, любая болезнь — результат рассогласования тех или иных колебательных процессов.

Суточные биологические ритмы

Понимание логики колебаний физиологических процессов позволяет оптимально выстраивать деятельность. В этом смысле особенно велико значение биологических ритмов длительностью около суток. Их используют как для определения эффективного так и для медицинской диагностики, лечения, и даже выбора дозы препаратов.

В человеческом организме сутки — период колебания огромного числа процессов. Одни из них изменяются существенно, другие — минимально. Важно при этом, что показатели и тех, и других не выходят за рамки нормы, то есть не становятся угрожающими здоровью.

Температурные колебания

Терморегуляция — залог постоянства внутренней среды, а значит, правильной работы организма для всех млекопитающих, в том числе и человека. Изменение температуры происходит в течение суток, при этом диапазон колебаний совсем невелик. Минимальные показатели характерны для периода от часа ночи до пяти утра, максимальные регистрируются около шести часов вечера. Амплитуда колебаний составляет при этом чаще всего меньше одного градуса.

Сердечно-сосудистая и эндокринная системы

Работа главного «мотора» человеческого организма также подвержена колебаниям. Существуют две временные точки, в которые снижается активность сердечно-сосудистой системы: час дня и девять вечера.

Свои ритмы свойственны и всем органам кроветворения. Пик активности костного мозга приходится на раннее утро, а у селезенки — на восемь часов вечера.

Секреция гормонов тоже непостоянна на протяжении дня. Концентрация адреналина в крови возрастает ранним утром и достигает своего пика к девяти часам. Такая особенность объясняет бодрость и активность, которые чаще всего свойственны людям в первой половине дня.

Акушеркам известна любопытная статистика: родовая деятельность в большинстве случаев начинается около полуночи. Это также связано с особенностями работы К этому времени активизируется задняя доля гипофиза, вырабатывающая соответствующие гормоны.

Утром — мясо, вечером — молоко

Для приверженцев правильного питания будут любопытны факты, связанные с пищеварительной системой. Первая половина дня — время, когда усиливается перистальтика желудочно-кишечного тракта, увеличивается выработка желчи. Печень утром активно расходует гликоген и отдает воду. Из этих закономерностей хронобиологи выводят нехитрые правила: тяжелую и жирную пищу лучше есть в первой половине дня, а после обеда и вечером идеальны молочные продукты и овощи.

Работоспособность

Не секрет, что биоритмы человека влияют на его активность в течение дня. Колебания у разных людей имеют особенности, однако можно выделить и общие закономерности. Три «птичьих» хронотипа, связывающие биологические ритмы и работоспособность, пожалуй, известны всем. Это «жаворонок», «сова» и «голубь». Первые два — крайние варианты. «Жаворонки» полны сил и энергии с утра, легко встают и рано ложатся спать.

«Совы», как и их прототип, ведут ночной образ жизни. Активный период для них начинается примерно в шесть вечера. Ранний подъем им бывает очень трудно перенести. «Голуби» способны работать как днем, так и вечером. В хронобиологии их называют аритмиками.

Зная свой тип, человек может более эффективно управлять собственной деятельностью. Впрочем, существует мнение, что любая «сова» может стать «жаворонком» при желании и настойчивости, а разделение на три типа обусловлено, скорее, привычками, нежели заложенными особенностями.

Постоянное изменение

Биоритмы человека и других организмов не являются жесткими, навсегда закрепленными признаками. В процессе онто- и филогенеза, то есть индивидуального развития и эволюции, они изменяются с определенными закономерностями. Что отвечает за подобные сдвиги, до конца еще непонятно. Существует две основные версии на этот счет. Согласно одной из них, изменениями руководит заложенный на клеточном уровне механизм — его можно назвать

Другая гипотеза основную роль в этом процессе отводит геофизическим факторам, которые еще предстоит изучить. Приверженцы этой теории объясняют различия биоритмов особей их положением на эволюционной лестнице. Чем выше уровень организации, тем интенсивнее обмен веществ. При этом характер показателей не меняется, но увеличивается амплитуда колебания. Саму же ритмичность в биологии и ее синхронизацию с геофизическими процессами они рассматривают как результат работы естественного отбора, приводящий к превращению внешнего (например, смена дня и ночи) во внутреннее (период активности и сна) колебание ритма.

Влияние возраста

Хронобиологам удалось установить, что в процессе онтогенеза, в зависимости от проходимой организмом стадии, меняются околосуточные ритмы. Каждому развития соответствуют свои колебания внутренних систем. Причем изменение биологических ритмов подчинено определенной закономерности, описанной российским специалистом Г.Д. Губиным. Ее удобно рассмотреть на примере млекопитающих. У них подобные изменения связаны в первую очередь с амплитудами околосуточных ритмов. С первых этапов индивидуального развития они нарастают и достигают максимума в молодом и зрелом возрасте. Затем амплитуды начинают уменьшаться.

Это не единственные изменения ритмов, связанные с возрастом. Меняются также последовательности акрофаз (акрофаза — точка времени, когда наблюдается максимальное значение параметра) и величины диапазона возрастной нормы (хронодезма). Если учитывать все эти изменения, становится очевидным, что именно в зрелом возрасте биоритмы прекрасно согласованы и организм человека способен противостоять различным внешним влияниям, сохраняя свое здоровье. С течением времени ситуация меняется. В результате рассогласования различных ритмов запас здоровья постепенно заканчивается.

Хронобиологи предлагают использовать подобные закономерности для прогнозирования болезней. На основе знания об особенностях колебаний околосуточных ритмов человека на протяжении жизни теоретически возможно построение некоего графика, отражающего запас здоровья, его максимумы и минимумы во времени. Подобное тестирование — дело будущего, по мнению большинства ученых. Однако существуют теории, позволяющие построить нечто подобное такому графику уже сейчас.

Три ритма

Приоткроем немного завесу тайны и расскажем о том, как определить свои биоритмы. Расчет в них делается на основе теории психолога Германа Свобода, врача Вильгельма Фисса и инженера Альфреда Тельчера, созданной ими на рубеже XIX и XX веков. Суть концепции в том, что существует три ритма: физический, эмоциональный и интеллектуальный. Они возникают в момент рождения и на протяжении всей жизни не меняют своей частоты:

    физический — 23 дня;

    эмоциональный — 28 дней;

    интеллектуальный — 33 дня.

Если построить график их изменений с течением времени, он примет вид синусоиды. Для всех трех параметров часть волны над осью Ох соответствует подъему показателей, под ней располагается зона спада физических, эмоциональных и умственных возможностей. Биоритмы, расчет которых можно произвести по подобному графику, в точке пересечения с осью сигнализируют о начале периода неопределенности, когда сильно падает устойчивость организма к воздействиям внешней среды.

Определение показателей

Расчет биологических ритмов на основе этой теории можно произвести самостоятельно. Для этого необходимо подсчитать, сколько вы уже прожили: умножить возраст на количество дней в году (не забудьте, что в високосном их 366). Полученную цифру нужно разделить на частоту того биоритма, график которого вы строите (23, 28 или 33). Получится некоторое целое число и остаток. Целую часть снова умножьте на продолжительность конкретного биоритма? f полученное значение вычтите из количества прожитых дней. Остаток будет числом дней периода в настоящий момент.

Если полученное значение не превышает одной четвертой от продолжительности цикла, — это время подъема. В зависимости от биоритма оно предполагает бодрость и физическую активность, хорошее настроение и эмоциональную устойчивость, творческое вдохновение и интеллектуальный подъем. Значение, равное половине продолжительности периода, символизирует время неопределенности. Попадание в последнюю треть длительности любого биоритма означает нахождение в зоне спада активности. В это время человеку свойственно быстрее уставать, возрастает опасность болезней, если речь идет о физическом цикле. В эмоциональном плане наблюдается снижение настроения вплоть до депрессии, ухудшение способности сдерживать сильные внутренние порывы. На уровне интеллекта период спада характеризуется трудностью в принятии решений, некоторой заторможенностью мысли.

Отношение к теории

В научном мире концепция трех биоритмов в таком формате, как правило, критикуется. Отсутствуют достаточные основания для предположения, что в организме человека нечто может быть настолько неизменным. Об этом говорят все обнаруженные закономерности, которым подчиняется ритмичность в биологии, характеристики внутренних процессов, свойственные разным уровням живых систем. Поэтому описанную методику расчета и всю теорию чаще всего предлагается рассматривать как интересный вариант времяпрепровождения, но не серьезную концепцию, на основе которой стоит планировать свою деятельность.

Биологический ритм сна и бодрствования, таким образом, не единственный, существующий в организме. Колебаниям подвержены все системы, составляющие наше тело, причем не только на уровне таких крупных формирований, как сердце или легкие. Ритмичные процессы заложены еще в клетках, а потому свойственны живой материи в целом. Наука, изучающая подобные колебания, пока достаточно молода, но уже стремится объяснить многие закономерности, существующие в человеческой жизни и во всей природе. Уже накопленные данные позволяют предположить, что потенциал хронобиологии на самом деле очень высок. Возможно, в ближайшее время ее принципами станут руководствоваться и врачи, назначая дозы лекарств в соответствии с особенностями фазы того или иного биологического ритма.

Биологические ритмы, биоритмы, — это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменениям жизнедеятельности передается по наследству и обнаружена практически у всех живых организмов. Их можно наблюдать в отдельных , и , в целых организмах и в .

Биоритмы подразделяют на физиологические и экологические. Физиологические ритмы, как правило, имеют периоды от долей секунды до нескольких минут. Это, например, ритмы , биения сердца и артериального давления. Экологические ритмы по длительности совпадают с каким-либо естественным ритмом окружающей среды. К ним относят суточные, сезонные (годовые), приливные и лунные ритмы. Благодаря экологическим ритмам организм ориентируется во времени и заранее готовится к ожидаемым изменениям условий существования. Так, некоторые цветки раскрываются незадолго до рассвета, как будто зная, что скоро взойдет солнце. Многие животные еще до наступления холодов впадают в зимнюю или мигрируют (см. ). Таким образом, экологические ритмы служат организму как биологические часы.

Экологические ритмы устойчивы к различным физическим и химическим воздействиям и сохраняются даже при отсутствии соответствующих изменений во внешней среде. Большинство растений умеренных и высоких широт на зиму теряют листья, чтобы избежать потери влаги. Яблоня или груша сохраняют сезонную периодичность сбрасывания листьев и при выращивании их в тропиках, где никогда не бывает морозов. У панцирных моллюсков во время морских приливов створки раковины открыты шире, чем во время отливов. Этот приливный ритм открывания и закрывания створок наблюдался у моллюсков и в аквариуме за 1600 км от океанского побережья, где они были отловлены. Французский спелеолог М. Сиффре 205 дней провел под землей в пещере в полном одиночестве и темноте. Все это время у него отмечался суточный ритм и бодрствования.

Основной земной ритм — суточный, обусловленный вращением Земли вокруг своей оси, поэтому практически все процессы в живом организме обладают суточной периодичностью. Все эти ритмы (а у человека их уже обнаружено более 100) определенным образом связаны друг с другом, образуя единую, согласованную во времени ритмическую систему организма. При рассогласовании ритмов развивается заболевание, получившее название десинхроноза. У человека десинхроноз наблюдается, например, при перелетах через несколько часовых поясов, когда ему приходится привыкать к новому распорядку дня.

Нарушение ритма и бодрствования может привести не только к бессоннице, но и к заболеваниям сердечно-сосудистой, дыхательной и . Поэтому так важно соблюдать режим дня. Биоритмы интенсивно исследуются специалистами в области космической и медицины, так как при освоении новых планет космонавты будут полностью лишены обычных ритмов среды.

Наука о биологических ритмах — биоритмология — еще очень молода. Но уже сейчас она имеет большое практическое значение. Искусственно изменяя сезонные циклы освещения и температуры, можно добиться массового цветения и плодоношения растений в теплицах, высокой плодовитости животных. Любое лекарство или яд по-разному влияет на организм в течение суток. На эту особенность обратили внимание еще основоположники медицины в Древнем Китае, которые составили «часы жизненной силы» и «часы заболеваний» того или иного . Особенно широкое применение эти «часы» нашли при иглоукалывании. В настоящее время фактор времени учитывают при лечении многих заболеваний, и в первую очередь при лечении рака. Определив время наименьшей устойчивости насекомых к инсектицидам, можно проводить химические обработки с наибольшей эффективностью при минимальном загрязнении окружающей среды.

Проблема биологических ритмов еще далека от окончательного решения. До сих пор не разгаданы тонкие механизмы биологических часов.

КАК УСТРОИТЬ ЖИВЫЕ ЧАСЫ

Одна из наиболее интересных проявлений биологического измерения времени — суточная периодичность открывания и закрывания цветков у растений. Каждое растение «засыпает» и «просыпается» в строго определенное время суток. Рано утром (в 4 ч) раскрывают свои цветки цикорий и шиповник, в 5 ч — мак, в 6 ч — одуванчик, полевая гвоздика, в 7 ч — колокольчик, огородный картофель, в 8 ч — бархатцы и вьюнки, в 9—10 ч — ноготки, мать-и-мачеха и только в 11 ч — торица. Существуют и цветы, раскрывающие свои венчики ночью. В 20 ч раскрываются цветки душистого табака, а в 21 ч — горицвета и ночной фиалки.

Так же в строго определенное время и закрываются цветки: в полдень — осот полевой, в 13—14 ч — картофель, в 14—15 ч — одуванчик, в 15—16 ч — мак и торица, в 16—17 ч — ноготки, в 17—18 ч — мать-и-мачеха, в 18—19 ч — лютик и в 19—20 ч — шиповник.

Вы можете устроить на садовой клумбе живые часы. Для этого необходимо посадить цветущие растения в таком порядке, в каком они раскрывают или закрывают свои цветки. Такие многокрасочные и ароматные часы не только будут радовать вас своей красотой, но и позволят достаточно точно (с интервалом 1 — 1,5 ч) определять время.

Впервые такие цветочные часы устроил выдающийся шведский естествоиспытатель в 20-х гг. XVIII в.

Однако цветочные часы точно показывают время только в ясную и солнечную погоду. В пасмурные дни или просто перед переменой погоды они могут и обмануть. Поэтому полезно создать и коллекцию зеленых барометров, предсказывающих изменение погоды. Перед дождем, например, закрывают свои венчики ноготки и лютики. А уроженица тропических лесов Бразилии причудливая монстера способна предсказать осадки даже за сутки, обильно выделяя из листьев влагу.

Раскрывание и закрывание цветков зависят и от многих других условий, например от географического положения местности или времени восхода и захода солнца. Поэтому, прежде чем составить цветочные часы, необходимо провести предварительные наблюдения.

Цветочные часы можно устроить, например, из этих растений. В кружках показано примерное время, когда открываются и закрываются цветки.

Биологические ритмы организма – это изменения характера и интенсивности биологических процессов в организме, которые имеют определенную периодичность. Они присутствуют в каждом живом организме и являются настолько точными, что их даже называют «биологическими часами» или же «внутренними часами». На самом деле, именно биоритмы управляют нашими жизнями, хотя мы в этом даже не отдаем себе отчета. Но ведь если задуматься, то важность биологических ритмов человека становится очевидной, ведь даже основной орган – сердце, работает в определенном ритме, который задается теми самыми «внутренними часами». Но что же такое эти биологические ритмы и какую именно роль они играют в человеческих жизнях, каково их значение? Давайте несколько более подробно разберемся в этих вопросах.

Виды биологических ритмов

Все биологические ритмы делятся по определенным типам. При этом существует несколько разнообразных классификаций, основывающихся на разных критериях. Самой распространенной, можно даже сказать, основной классификацией, является та, в которой критерием считается длина периода биологических ритмов.

Согласно этой классификации, существуют циркадианные, ультрадианные, инфрадианные, циркалунарные и лунно-месячные биологические ритмы. Циркадианные ритмы имеют периодичность около двадцати четырех часов и являются наиболее изученными из всех. Ультрадианные ритмы – околочасовые. Инфрадианные – ритмы, периодичность которых составляет больше, чем двадцать четыре часа. Остальные два биологических ритма связаны с лунными фазами.

Также есть классификация биоритмов по источнику происхождения. Они разделяются на физиологические, геофизические и геосоциальные. Физиологические – это биоритмы внутренних органов человека, которые не зависят от внешних факторов. Геофизические биоритмы уже входят в плотную зависимость от внешних факторов окружающей среды. А геосоциальные ритмы не являются врожденными в отличие от первых двух и формируются под влиянием, как факторов окружающей среды, так и под влиянием социальных факторов.

Роль биологических ритмов в жизни человека

Существует, весьма условная, по мнению ученых хронобиологов, теория трех биоритмов. Согласно ей, состояние человека определяется тремя биоритмами: физическим, интеллектуальным и эмоциональным. И бывают дни, когда одни биоритмы активнее других, так как все они обладают разной степенью периодичности. Именно поэтому в определенные дни и определенное время бывают всплески, например, физической активности при плохом настроении, или же выбросы позитивных эмоций, а, быть может, появляется огромно желание заняться какой-то умственной деятельностью.

То есть, от биоритмов полностью зависит активность человеческого организма и его состояние. Поэтому не стоит «насиловать» свой организм. Напротив, нужно прислушиваться к нему и грамотно использовать свои собственные ресурсы.

Например, сон и его значение, как биологического ритма, пожалуй, является одним из самых важных. Именно поэтому никак нельзя ложиться слишком поздно или спать слишком мало, ведь из этого следует нарушение абсолютно всех биоритмов организма. Вообще ученными установлено, что наилучший сон происходит в период с двадцати трех часов до семи. А ложиться после полуночи весьма вредно для умственной активности, то есть, интеллектуальных биоритмов.

Нельзя забывать и о том, что человек все же является частью природы, поэтому на него оказывают влияние и фазы луны. Например, многие люди ощущают упадок сил в новолуние и повышенную активность во время полнолуния.

Биологические ритмы — периодически повторяющиеся измене­ния характера и интенсивности биологических процессов и явле­ний в живых организмах. Биологические ритмы физиологических функций столь точны, что их часто называют «биологическими часами».

Есть основание полагать, что механизм отсчета времени заключен в каждой моле­куле человеческого тела, в том числе в молекулах ДНК, хранящих генетическую информацию. Клеточные биологические часы назы­вают «малыми», в отличие от «больших», которые, как считают, расположены в головном мозге и синхронизируют все физиологи­ческие процессы в организме.

Классификация биоритмов.

Ритмы , задаваемые внутренними «часами» или водителями рит­ма, называются эндогенными , в отличие от экзогенных , которые регулируются внешними факторами. Большинство биологических ритмов являются смешанными, т. е. частично эндогенными и час­тично экзогенными.

Во многих случаях главным внешним фактором, регулирующим ритмическую активность, служит фотопериод, т. е. продолжитель­ность светового дня. Это единственный фактор, который может быть надежным показателем времени, и он используется для установки «часов».

Конкретная природа «часов» неизвестна, но нет сомнений, что здесь действует физиологический механизм, который может вклю­чать как нервные, так и эндокринные компоненты.

Большинство ритмов формируются в процессе индивидуально­го развития (онтогенеза). Так, суточные колебания активности различных функций у ребенка наблюдаются до его рождения, их мож­но зарегистрировать уже во второй половине беременности.

  • Биологические ритмы реализуются в тесном взаимодействии с окружающей средой и отражают особенности приспособления орга­низма к циклично изменяющимся факторам этой среды. Вращение Земли вокруг Солнца (с периодом около года), вращение Земли вок­руг своей оси (с периодом около 24 ч), вращение Луны вокруг Зем­ли (с периодом около 28 дней) приводят к колебаниям освещеннос­ти, температуры, влажности, напряженности электромагнитного поля и т. п., служат своеобразными указателями, или датчиками, времени для «биологических часов».
  • Биологические ритмы имеют большие различия по частотам или периодам. Выделяют группу так называемых высокочастотных био­логических ритмов, периоды колебаний которых находятся в пре­делах от доли секунды до получаса. Примерами могут служить колебания биоэлектрической активности головного мозга, сердца, мышц, других органов и тканей. Регистрируя их с помощью спе­циальной аппаратуры, получают ценную информацию о фи­зиологических механизмах деятельности этих органов, которая используется также для диагностики заболеваний (электроэнцефа­лография, электромиография, электрокардиография и др.). К этой же группе можно отнести ритм дыхания.
  • Биологические ритмы с периодом 20-28 ч называются циркадианными (циркадными , или околосуточными), например, перио­дические колебания на протяжении суток температуры тела, час­тоты пульса, артериального давления, работоспособности человека и др.
  • Выделяют также группу биологических ритмов низкой часто­ты; это околонедельные, околомесячные, сезонные, окологодовые, многолетние ритмы .

В основе выделения каждого из них лежат четко регистрируе­мые колебания какого-либо функционального показателя.

Напри­мер: Околонедельному биологическому ритму соответствует уро­вень выделения с мочой некоторых физиологически активных веществ, околомесячному — менструальный цикл у женщин, сезон­ным биологическим ритмам — изменения продолжительности сна, мышечной силы, заболеваемости и т. д.

Наиболее изучен циркадианный биологический ритм, один из самых важных в организме человека, выполняющий как бы роль дирижера многочисленных внутренних ритмов.

Циркадианные ритмы высокочувствительны к действию различ­ных отрицательных факторов, и нарушение слаженной работы си­стемы, порождающей эти ритмы, служит одним из первых симптомов заболевания организма. Установлены циркадианные колебания более 300 физиологических функций организма человека. Все эти процессы согласованы во времени.

Многие околосуточные процессы достигают максимальных зна­чений в дневное время каждые 16-20 ч и минимальных — ночью или в ранние утренние часы.

Например: Ночью у человека самая низкая температура тела. К утру она повышается и достигает мак­симума во второй половине дня.

Основной причиной суточных колебаний физиологических фун­кций в организме человека являются периодические изменения возбудимости нервной системы, угнетающей или стимулирующей обмен веществ. В результате изменения обмена веществ и возни­кают изменения различных физиологических функций (рис.1).

Например: Частота дыхания днем выше, чем ночью. В ночное время понижена функция пищеварительного аппарата.

Рис. 1. Суточные биологические ритмы в организме человека

Например: Установлено, что суточная динамика температуры тела имеет волнообразный характер. Примерно к 18 ч температура достигает максимума, а к полуночи снижается: минимальное ее значение меж­ду часом ночи и 5 ч утра. Изменение температуры тела в течение суток не зависит от того, спит человек или занимается интенсив­ной работой. Температура тела определяет скорость биологических реакций , днем обмен веществ идет наиболее интенсивно.

С суточным рит­мом тесно связаны сон и пробуждение. Своеобразным внутренним сигналом для отдыха ко сну служит понижение температуры тела. На протяжении суток она изменяется с амплитудой до 1,3°С.

Например: Измеряя через каждые 2-3 ч на протяжении нескольких суток температуру тела под языком (обычным медицинским термомет­ром), можно довольно точно установить наиболее подходящий момент для отхода ко сну, а по температурным пикам определить периоды максимальной работоспособности.

Днем растет частота сердечных сокращений (ЧСС), выше артериальное давление (АД), чаще дыхание. Изо дня в день к моменту пробуждения, как бы пред­восхищая возрастающую потребность организма, в крови повыша­ется содержание адреналина — вещества, которое увеличивает ЧСС, повышает АД, активизирует работу всего организма; к этому времени в крови накапливаются биологические стимуляторы. Снижение концентрации этих веществ к вечеру — непременное условие спокойного сна. Недаром нарушения сна всегда сопровож­даются волнением и тревогой: при этих состояниях в крови нарас­тает концентрация адреналина и других биологически активных веществ, организм длительное время находится в состоянии «бое­вой готовности». Подчиняясь биологическим ритмам, каждый физиологический показатель в течение суток может существенно менять свой уровень.

Распорядок жизни, акклиматизация.

Биологические ритмы являются основой рациональной регла­ментации распорядка жизни человека, так как высокая работоспо­собность и хорошее самочувствие могут быть достигнуты только в том случае, если ритм жизни соответствует свойственному орга­низму ритму физиологических функций. В связи с этим необходи­мо разумно организовать режим труда (тренировок) и отдыха, а также прием пищи. Отклонение от правильного режима питания может привести к существенному увеличению веса, который в свою очередь, нарушая жизненные ритмы организма, вызывает измене­ние обмена веществ.

Например: Если принимать пищу общей кало­рийностью 2000 ккал только по утрам, вес снижается; если ту же пищу принимать в вечерние часы, увеличивается. Для того, чтобы сохранить вес тела, достигнутый к 20-25 годам, пищу следует принимать 3-4 раза в день в точном соответствии с индивидуаль­ными суточными затратами энергии и в те часы, когда появляется заметное чувство голода.

Однако эти общие закономерности иногда скрывают многооб­разие индивидуальных особенностей биологических ритмов. Не всем людям свойственны однотипные колебания работоспособнос­ти. Одни, так называемые «жаворонки», энергично работают в пер­вой половине дня; другие, «совы», — вечером. Люди, относящиеся к «жаворонкам», вечером испытывают сонливость, рано ложатся спать, но, рано просыпаясь, чувствуют себя бодрыми и работоспо­собными (рис.2).

Легче переносит акклиматизацию человек, если он принимает (3-5 раз в сутки) горячее питание и адаптогены, витаминные комп­лексы, а физические нагрузки увеличивает постепенно, по мере адаптации к ним (рис.3).

Рис. 2. Кривые ритма трудоспособности в течение суток

Рис. 3. Суточные ритмы протекания жизненных процессов при неизменных внешних условиях жизни (по Графу)

При несоблюдении этих условий может наступить так называе­мый десинхроноз (своеобразное патологическое состояние).

Явление десинхроноза наблюдается и у спортсменов, особенно у тренирующихся в условиях жары и влажного климата или среднегорья. Поэтому спортсмен, вылетающий на международные со­ревнования, должен быть хорошо подготовлен. Сегодня существу­ет целая система мероприятий, направленных на сохранение привычных биоритмов.

Для биологических часов человека важен правильный ход не только в суточных, но и в так называемых низкочастотных ритмах, например в околонедельном.

В настоящее время установлено, что недельный ритм вырабо­тан искусственно: убедительных данных о существовании врожден­ных семидневных ритмов у человека не обнаружено. Очевидно, что это эволюционно закрепленная привычка. Семидневная неделя ста­ла основой ритма и отдыха еще в древнем Вавилоне. За тысячеле­тия сформировался недельный социальный ритм: человек продук­тивнее работает в середине недели, чем в начале или в конце ее.

Биологические часы человека отражают не только суточные природные ритмы, но и имеющие большую продолжительность, например сезонные. Они проявляются в повышении обмена веществ весной и в снижении его осенью и зимой, в увеличении процента гемоглобина в крови и в изменении возбудимости дыхательного центра в весеннее и летнее время.

Состояние организма в летнее и зимнее время в какой-то степе­ни соответствует его состоянию днем и ночью. Так, зимой по срав­нению с летом снижалось в крови содержание сахара (аналогичное явление происходит и ночью), увеличивалось количество АТФ и холестерина.

Биоритмы и работоспособность.

Ритмы работоспособности, подобно ритмам физиологических процессов, по своей природе эндогенны.

Работоспособность может зависеть от многих факторов, дей­ствующих по отдельности или совместно. К этим факторам отно­сятся: уровень мотивации, прием пищи, факторы внешней среды, физическая готовность, состояние здоровья, возраст и другие факторы. По-видимому, на динамику работоспособности влияет и утомление (у элитных спортсменов — хроническое утомление), хотя не вполне ясно, каким именно образом. Утомление, возникающее при выполнении упражнений (тренировочных нагрузок), трудно преодо­левать даже достаточно мотивированному спортсмену.

Например: Утомление снижает работоспособность, а повторная тренировка (с интерва­лом в 2-4 ч после первой) улучшает функциональное состояние спортсмена.

При трансконтинентальных перелетах циркадианные ритмы различных функций перестраиваются с разной скоростью — от 2-3 дней до 1 месяца. Для нормализации циклично­сти до перелета необходимо каждый день сдвигать на 1 ч отход ко сну. Если это делать в течение 5-7 дней до отлета и ложиться спать в темной комнате, то удастся быстрее пройти акклиматизацию.

При прибытии в новый временной пояс необходимо плавно вхо­дить в тренировочный процесс (умеренные физические нагрузки в те часы, когда будут производиться соревнования). Тренировки не должны носить «ударный характер».

Следует отметить, что естественный ритм жизнедеятельности организма обусловлен не только внутренними факторами, но и вне­шними условиями. В результате исследований был выявлен волно­вой характер изменения нагрузок на тренировке. Прежние представ­ления о неуклонном и прямолинейном наращивании тренировочных нагрузок оказались несостоятельными. Волнообразный характер изменения нагрузок в процессе тренировок связан с внутренними биологическими ритмами человека.

Например: Различают три категории «волн» тренировок: «малые», охватывающие от 3 до 7 дней (или не­сколько более), «средние» — чаще всего 4-6 недель (недельные тре­нировочные процессы) и «большие», продолжающиеся несколько месяцев.

Нормализация биологических ритмов позволяет осуществлять интенсивные физические нагрузки, а тренировки при нарушенном биологическом ритме приводят к различным функциональным рас­стройствам (например, десинхронозу), а иногда и к заболеваниям.

Источник информации: В.Смирнов, В.Дубровский (Физиология физического воспитания и спорта).