Транскрибирование биология. Что такое транскрипция в биологии и как она происходит. Схема транскрипции в эукариотических клетках

Транскрибирование биология. Что такое транскрипция в биологии и как она происходит. Схема транскрипции в эукариотических клетках

После расшифровки генетического кода встал вопрос: каким образом осуществляется перенос информации с ДНК на белок? Биохимическими исследованиями было установлено, что основная масса ДНК в клетке локализована в ядре, тогда как синтез белка идет в цитоплазме. Это территориальное разобщение ДНК и синтеза белка обусловило поиски посредника. Поскольку синтез белка шел с участием рибосом, то на роль посредника была выдвинута РНК. Была создана схема, иллюстрирующая направление потока генетической информации в клетке:

ДНК → РНК → белок

Она получила название центральной догмы молекулярной биологии. Ф. Крик постулировал, что синтез макромолекул по этой схеме осуществляется по матричному принципу. На доказательство правильности этого постулата потребовались многие годы.

Вначале предполагалось, что роль посредника выполняет рибосомальная РНК (“один ген — одна рибосома — один белок”). Однако в скором времени выяснилась несостоятельность такого предположения. Было показано, что в процессе белкового синтеза количество рибосом не изменяется, т.е. новая РНК не синтезируется и, следовательно, новая информация не поступает. Вскоре в составе рибосом была обнаружена фракция нестабильной РНК, молекулы которой непрочно удерживаются на рибосоме с помощью катионов Mg. Методом молекулярной гибридизации было показано, что молекулы этой РНК являются копиями определенных участков ДНК. Она получила название матричной , или информационной РНК . Ее также называли раньше РНК-посредник и мессенджер-РНК. Комплементарность этих молекул определенным участкам ДНК говорила о том, что они синтезируются по матричному типу на ДНК.

Постепенно был выяснен весь путь переноса информации от ДНК к белку. Он состоит из двух этапов: транскрипции и трансляции . На этапе транскрипции происходит считывание и перенос генетической информации с ДНК на иРНК. Процесс транскрипции протекает в три стадии: инициации , элонгации и терминации . Информация считывается только с одной цепи ДНК (+ цепь), так как исходя из свойств генетического кода, комплементарные участки ДНК не могут кодировать структуру одного и того же белка из-за отсутствия комплементарной вырожденности кода. Ведет транскрипцию фермент РНК-полимераза, состоящий из четырех субъединиц (ααββ") и не обладающий специфичностью в отношении источника ДНК. На начальном этапе транскрипции — инициации — к ферменту присоединяется пятая субъединица, так называемый s-фактор, который осуществляет узнавание специфического участка ДНК, промотора. Промоторы не транскрибируются. Узнаются они s-фактором по наличию в них специфической последовательности нуклеотидов. В бактериальных промоторах она называется блоком Прибнова и имеет вид ТАТААТ (с небольшими вариациями). К промотору присоединяется фермент РНК-полимераза. Рост цепи иРНК идет в одном направлении, скорость транскрипции равняется ≈ 45-50 нуклеотидов в 1 секунду. На этапе инициации синтезируется только короткая цепочка из 8 нуклеотидов, после чего s-фактор отделяется от РНК-полимеразы и начинается этап элонгации. Наращивание цепи иРНК ведет уже белок-тетрамер. Участок, с которого считывается информация, называется транскриптоном. Он заканчивается терминатором — специфической нуклеотидной последовательностью, играющей роль stop-сигнала. Дойдя до терминатора, фермент РНК-полимераза прекращает работу и с помощью белковых факторов терминации отделяется от матрицы.

В бактериальных клетках образующиеся молекулы иРНК могут сразу выполнять роль матриц для синтеза белка, т.е. транслироваться. Они соединяются с рибосомами, к которым одновременно молекулы транспортных РНК (тРНК) доставляют аминокислоты. Цепочки транспортных РНК состоят примерно из 70 нуклеотидов. Однонитиевая молекула тРНК имеет участки комплементарного спаривания, в составе которых находятся активные центры: участок узнавания тРНК ферментом тРНК-синтетазой, присоединяющим к тРНК соответствующую активированную аминокислоту; акцептор — участок, к которому присоединяется аминокислота, и антикодоновая петля.

Антикодон — это триплет, комплементарный соответствующему кодону в молекуле иРНК. Взаимодействие кодон-антикодон идет по типу комплементарного спаривания, во время которого происходит присоединение аминокислоты к растущей белковой цепи. Инициирующим кодоном в составе разных иРНК является кодон AUG, соответствующий аминокислоте метионину. Поэтому первой к матрице подходит тРНК с антикодоном UAC, соединенная с активированной аминокислотой метионином. Ферменты, активирующие аминокислоты и соединяющие их с тРНК, называются аминоацил-тРНК-синтетазы. Все этапы биосинтеза белка (инициация, элонгация, терминация) обслуживаются белковыми факторами трансляции. У прокариот их по три на каждый этап. В конце матрицы иРНК находятся нонсенс-кодоны, которые не считываются и знаменуют собой конец трансляции.

В геноме многих организмов, от бактерий до человека, обнаружены гены и соответствующие им тРНК, осуществляющие нестандартное считывание кодонов. Это явление получило название неоднозначности трансляции .

Оно позволяет избежать негативных последствий ошибок, возникающих в структуре молекул иРНК при транскрипции. Так, при появлении внутри молекулы иРНК нонсенс-кодонов, способных преждевременно прекратить процесс транскрипции, включается механизм супрессии. Он состоит в том, что в клетке появляется необычная форма тРНК с антикодоном, комплементарным нонсенс-кодону, чего в норме быть не должно. Ее появление является результатом действия гена, осуществляющего замену основания в антикодоне тРНК, близким по составу к нонсенс-кодону. В результате такой замены нонсенс-кодон считывается как обычный значащий кодон. Подобные мутации получили название супрессорных, т.к. они подавляют изначальную мутацию, которая привела к появлению нонсенс-кодона.

ДНК - носитель всей генетической информации в клетке - непосредственного участия в синтезе белков не принимает. В клетках животных и растений молекулы ДНК содержатся в хромосомах ядра и отделены ядерной мембраной от цитоплазмы, где происходит синтез белков. К рибосомам - местам сборки белков - высылается из ядра несущий информацию посредник, способный пройтичерез поры ядерной мембраны. Таким посредником является информационная РНК ( и-РНК). По принципу комплементарности она считывается с ДНК при участии фермента, называемого РНК-полимеразой . Процесс считывания (вернее, списывания), или синтеза РНК, осуществляемый РНК-полимеразой, называется транскрипцией (лат. transcriptio - переписывание). Информационная РНК - это однонитевая молекула, й транскрипция идет с одной нити двунитевой молекулы ДНК. Если в транскрибируемой нити ДНК стоит нуклеотид Г, то РНК-полимераза включает в РНК Ц, если стоит Т, включает А, если стоит А, включает у (в состав РНК не входит Т) ( рис. 46). По длине каждая из молекул и-РНК в сотни раз короче ДНК. Информационная РНК является копией не всей молекулы ДНК, а только части ее - одного гена или группы рядом лежащих генов, несущих информацию о структуре белков, необходимых для выполнения одной функции. У прокариот такая, группа генов называется опероном . О том, как гены объединены в оперон и как организовано управление транскрипцией, вы прочтете в в разделе о биосинтезе белков . В начале каждого оперона находится своего рода посадочная площадка для РНК-полимеразы, называемая промотором . Это специфическая последовательность нуклеотидов ДНК, которую фермент узнает благодаря химическому сродству. Только присоединившись промотору, РНК-полимераза способна начать синтез и-РНК. Дойдя до конца оперона, фермент встречает сигнал (в виде определенной последовательности нуклеотидов), означающий конец считывания. Готовая и- РНК отходит от ДНК и направляется к месту синтеза белков. В описанном процессе транскрипции можно выделить четыре стадии:

1) Связывание РНК-полимеразы с промотором;

2) Инициация - начало синтеза. Она заключается в образовании первой фосфодиэфирной связи между АТФ или ГТФ и вторым нуклеотидом синтезирующейся молекулы и-РНК;

3) элонгация - рост цепи РНК, т. е. последовательное присоединение нуклеотидов друг к другу в том порядке, в котором стоят комплементарные нуклеотиды в транскрибируемой нити ДНК. Скорость элонгации достигает 50 нуклеотидов в секунду;

4) терминация - завершение синтеза и-РНК.

IV. ТРАНСКРИПЦИЯ

Транскрипция - первая стадия реализации генетической информации в клетке. В ходе процесса образуются молекулы мРНК, служащие матрицей для синтеза белков, а также транспортные, рибосомальные и другие виды молекул РНК, выполняющие структурные, адапторные и каталитические функции (рис. 4-26).

Рис. 4-26. Схема реализации генетической информации в фенотипические признаки. Реализацию потока информации в клетке можно представить схемой ДНК-"РНК-"белок. ДНК-"РНК обозначает биосинтез молекул РНК (транскрипцию); РНК-"белок означает биосинтез полипептидных цепей (трансляцию).

Транскрипция у эукариотов происходит в ядре. В основе механизма транскрипции лежит тот же структурный.принцип комплементарного спаривания оснований в молекуле РНК (G ≡ C, A=U и Т=А). ДНК служит только матрицей и в ходе транскрипции не изменяется. Рибонукле-озидтрифосфаты (ЦТФ, ГТФ, АТФ, УТФ) -субстраты и источники энергии, необходимые для протекания полимеразной реакции, образования 3",5"-фосфодиэфирной связи между рибонуклеозидмонофосфатами.

Синтез молекул РНК начинается в определённых последовательностях (сайтах) ДНК, которые называют промоторы, и завершается в терминирующих участках (сайты терминации). Участок ДНК, ограниченный промотором и сайтом терминации, представляет собой единицу транскрипции -транскриптон. У эукариотов в состав транскриптона, как правило, входит один ген (рис. 4-27), у прокариотов несколько. В каждом транскриптоне присутствует неинформативная зона; она содержит специфические последовательности нуклеотидов, с которыми взаимодействуют регуляторные транскрипционные факторы.

Транскрипционые факторы - белки, взаимодействующие с определёнными регуляторными сайтами и ускоряющие или замедляющие процесс транскрипции. Соотношение информативной и неинформативной частей в транскриптонах эукариотов составляет в среднем 1:9 (у прокариотов 9:1).

Соседние транскриптоны могут быть отделены друг от друга нетранскрибируемыми участками ДНК. Разделение ДНК на множество транскриптонов позволяет осуществлять с разной активностью индивидуальное считывание (транскрипцию) разных генов.

В каждом транскриптоне транскрибируется только одна из двух цепей ДНК, которая называетсяматричной, вторая, комплементарная ей цепь, называется кодирующей. Синтез цепи РНК идёт от 5"- к З"-концу, при этом матричная цепь ДНК всегда антипараллельна синтезируемой нуклеиновой кислоте (рис. 4-28).

Транскрипция не связана с фазами клеточного цикла; она может ускоряться и замедляться в зависимости от потребности клетки или организма в определённом белке.

РНК-полимеразы

Биосинтез РНК осуществляется ДНК-зависимыми РНК-полимеразами. В ядрах эукариотов обнаружены 3 специализированные РНК-полимеразы: РНК-полимераза I, синтезирующая пре-рРНК; РНК-полимераза II, ответственная за синтез пре-мРНК; РНК-полимераза III, синтезирующая пре-тРНК. РНК-полимеразы - олигомерные ферменты, состоящие из нескольких субъединиц - 2α, β, β", σ. Субъединица о (сигма) выполняет регуляторную функцию, это один из факторов инициации транскрипции, РНК-полимеразы I, II, III, узнающие разные промоторы, содержат разные по строению субъединицы σ.

А. Стадии транскрипции

В процессе транскрипции различают 3 стадии: инициацию, элонгацию и терминацию.

Инициация

Активация промотора происходит с помощью большого белка - ТАТА-фактора, называемого так потому, что он взаимодействует со специфической последовательностью нуклеотидов промотора -ТАТААА- (ТАТА-бокс) (рис. 4-29).

Присоединение ТАТА-фактора облегчает взаимодействие промотора с РНК-полимеразой. Факторы инициации вызывают изменение кон-формации РНК-полимеразы и обеспечивают раскручивание примерно одного витка спирали ДНК, т.е. образуется транскрипционная вилка,

Рис. 4-27. Строение транскриптона.

Рис. 4-28. Транскрипция РНК на матричный цепи ДНК. Синтез РНК всегда происходит в направлении 5" → 3".

Рис. 4-29. Строение промотора эукариотов. Промоторные элементы - специфические последовательности нуклеотидов, характерные для любого промотора, связывающего РНК-полимеразу. Первый промоторный элемент - последовательность АТАТАА- (ТАТА-бокс) отделён от сайта начала транскрипции приблизительно на 25 пар нуклеотидов (п.н.). На расстоянии примерно 40 (иногда до 120) п.н. от него располагается последовательность GGCCAATC- (СААТ-бокс).

в которой матрица доступна для инициации синтеза цепи РНК (рис. 4-30).

После того как синтезирован олигонуклеотид из 8-10 нуклеотидных остатков, σ-субъединица отделяется от РНК-полимеразы, а вместо неё к молекуле фермента присоединяются несколько факторов элонгации.

Элонгация

Факторы элонгации повышают активность РНК-полимеразы и облегчают расхождение цепей ДНК. Синтез молекулы РНК идёт от 5"- к З"-концу комплементарно матричной цепи ДНК. На стадии элонгации, в области транскрипционной

вилки, одновременно разделены примерно 18 нуклеотидных пар ДНК. Растущий конец цепи РНК образует временную гибридную спираль, около 12 пар нуклеотидных остатков, с матричной цепью ДНК. По мере продвижения РНК-полимеразы по матрице в направлении от 3"- к 5"-концу впереди неё происходит расхождение, а позади - восстановление двойной спирали ДНК.

Терминация

Раскручивание двойной спирали ДНК в области сайта терминации делает его доступным для фактора терминации. Завершается синтез РНК в

Рис. 4-30. Стадии транскрипции. 1 - присоединение ТАТА-фактора к промотору. Чтобы промотор был узнан РНК-полимера-зой, необходимо образование транскрипционного комплекса ТАТА-фактор/ТАТА-бокс (промотор). ТАТА-фактор остаётся связанным с ТАТА-боксом во время транскрипции, это облегчает использование промотора многими молекулами РНК-полимеразы; 2 - образование транскрипционной вилки; 3 - элонгация; 4.- терминация.

строго определенных участках матрицы - терминаторах (сайты терминации). Фактор терминации облегчает отделение первичного транскрипта (пре-мРНК), комплементарного матрице, и РНК-полимеразы от матрицы. РНК-полимераза может вступить в следующий цикл транскрипции после присоединения субъединицы σ.

Б. Ковалентная модификация (процессинг) матричной РНК

Первичные транскрипты мРНК, прежде чем будут использованы в ходе синтеза белка, подвергаются ряду ковалентных модификаций. Эти модификации необходимы для функционирования мРНК в качестве матрицы.

Модификация 5"-конца

Модификации пре-мРНК начинаются на стадии элонгации. Когда длина первичного транскрипта достигает примерно 30 нуклеотидных остатков, происходит кэпирование его 5"-конца. Осуществляет кэпирование гуанилилтрансфераза. Фермент гидролизует макроэргическую связь в молекуле ГТФ и присоединяет нуклеотиддифосфатный остаток 5"-фосфатной группой к 5"-концу синтезированного фрагмента РНК с образованием 5", 5"-фосфодиэфирной связи. Последующее метилирование остатка гуанина в составе ГТФ с образованием N 7 -метилгуанозина завершает формирование кэпа (рис. 4-31).

Рис. 4-31. Ковалентная модификация концевых нуклеотидных остатков первичного транскрипта мРНК.

Модифицированный 5"-конец обеспечивает инициацию трансляции, удлиняет время жизни мРНК, защищая её от действия 5"-экзонуклеаз в цитоплазме. Кэпирование необходимо для инициации синтеза белка, так как инициирующие триплеты AUG, GUG распознаются рибосомой только если присутствует кэп. Наличие кэпа также необходимо для работы сложной ферментной системы, обеспечивающей удаление нитронов.

Модификация 3"-конца

3"-Конец большинства транскриптов, синтезированных РНК-полимеразой II, также подвергается модификации, при которой специальным ферментом полиА-полимеразой формируется полиА-последовательность (полиА-"хвост"), состоящая из 100-200 остатков аде-ниловой кислоты.

Сигналом к началу полиаденилирования является последовательность -AAUAAA- на растущей цепи РНК. Фермент полиА-полимераза, проявляя экзонуклеазную активность, разрывает 3"-фосфоэфирную связь после появления в цепи РНК специфической последовательности -AAUAAA-. К 3"-концу в точке разрыва полиА-полимераза наращивает по-лиА-"хвост", Наличие полиА-последовательности на 3"-конце облегчает выход мРНК из ядра и замедляет её гидролиз в цитоплазме.

Ферменты, осуществляющие кэширование и полиаденилирование, избирательно связываются с РНК-полимеразой II, и в отсутствие полимеразы неактивны.

Сплайсинг первичных транскриптов мРНК

С появлением методов, позволяющих изучать первичную структуру молекул мРНК в цитоплазме и последовательность нуклеотидов кодирующей её геномной ДНК, было установлено, что они не комплементарны, а длина гена в несколько раз больше "зрелой" мРНК. Последовательности нуклеотидов, присутствующие в ДНК, но не входящие в состав зрелой мРНК, были названы некодирующими, или интроны, а последовательности, присутствующие в мРНК, - кодирующими, или экзоны. Таким образом, первичный транскрипт - строго комплементарная матрице нуклеиновая кислота (пре-мРНК), содержащая как экзоны, так и интроны. Длина интронов варьирует от 80 до 1000 нуклеотидов. Последовательности интронов "вырезаются" из первичного транскрипта, концы экзонов соединяются друг с другом. Такую модификацию РНК называют "сплайсинг" (от англ, to splice - сращивать). Сплайсинг происходит в ядре, в цитоплазму поступает уже "зрелая" мРНК.

Гены эукариотов содержат больше интронов, чем экзонов, поэтому очень длинные молекулы пре-мРНК (около 5000 нуклеотидов) после сплайсинга превращаются в более короткие молекулы цитоплазматической мРНК (от 500 до 3000 нуклеотидов).

Процесс "вырезания" интронов протекает при участии малых ядерных рибонуклеопротеинов (мяРНП). В состав мяРНП входит малая ядерная РНК (мяРНК), нуклеотидная цепь которой связана с белковым остовом, состоящим из нескольких протомеров. В сплайсинге принимают участие различные мяРНП (рис. 4-32).

Нуклеотидные последовательности нитронов функционально неактивны. Но на 5"- и З"-концах они имеют высокоспецифические последовательности - AGGU- и GAGG- соответственно (сайты сплайсинга), которые обеспечивают их удаление из молекулы пре-мРНК. Изменение структуры этих последовательностей влияет на процесс сплайсинга.

На первой стадии процесса мяРНП связываются со специфическими последовательностями первичного транскрипта (сайты сплайсинга), далее к ним присоединяются другие мяРНП. При формировании структуры сплайсосомы 3"-конец одного экзона сближается с 5"-концом следующего экзона. Сплайсосома катализирует реакцию расщепления 3",5"-фосфодиэфирной связи на границе экзона с интроном. Последовательность интрона удаляется, а два экзона соединяются. Образование 3",5"-фосфодиэфирной связи между двумя экзонами катализируют мяРНК (малые ядерные РНК), входящие в структуру сплайсосомы. В результате сплайсинга из первичных транскриптов мРНК образуются молекулы "зрелой" мРНК.

Альтернативный сплайсинг первичных транскриптов мРНЕ

Для некоторых генов описаны альтернативные пути сплайсинга и полиаденилирования одного и того же транскрипта. Экзон одного варианта сплайсинга может оказаться интроном в альтернативном пути, поэтому молекулы мРНК, образованные в результате альтернативного сплайсинга, различаются набором экзонов. Это приводит к образованию разных мРНК и, соответственно, разных белков с одного первичного транскрипта. Так, в парафолликулярных клетках щитовидной железы (рис. 4-33) в ходе транскрипции гена гормона кальцитонина (см. раздел 11) образуется первичный транскрипт мРНК, который состоит из шести экзонов. Матричная РНК кальцитонина образуется путём сплайсинга первых четырёх экзонов (1-4). Последний (четвёртый) экзон содержит сигнал полиаденилирования (последовательность -AAUAAA-), узнаваемый полиА-полимеразой в парафолликулярных клетках щитовидной железы. Этот же первичный транскрипт в клетках головного мозга в ходе другого (альтернативного)

Рис. 4-32. Сплайсинг РНК. В процессе сплайсинга принимают участие различные мяРНП, которые формируют сплайсосому. мяРНП, взаимодействуя с РНК и друг с другом, фиксируют и ориентируют реакционные группы первичного транскрипта. Каталитическая функция сплайсосом обусловлена РНК-составляющими; такие РНК называют рибозимами.

Рис. 4-33. Альтернативный сплайсинг гена кальцитонина. В клетках щитовидной железы сплайсинг первичного транскрипта приводит к образованию кальцитониновои мРНК, включающей 4 экзона и полиА-последовательность, которая образуется после расщепления транскрипта в первом участке сигнала полиаденилирования. В клетках мозга образуется мРНК, содержащая: экзоны 1, 2, 3, 5, 6 и полиА-последовательность, образованную после второго сигнала полиаденилирования.

пути сплайсинга превращается в мРНК кальцитонинподобного белка, отвечающего за вкусовое восприятие. Матричная РНК этого белка состоит из первых трёх экзонов, общих с кальцитониновои мРНК, но включает дополнительно пятый и шестой экзоны, не свойственные мРНК кальцитонина. Шестой экзон тоже имеет сигнал полиаденилирования -AAUAAA-, узнаваемый ферментом полиА-полимеразой в клетках нервной ткани. Выбор одного из путей (альтернативный сплайсинг) и одного из возможных сайтов полиаденилирования играет важную роль в тканеспецифической экспрессии генов.

Разные варианты сплайсинга могут приводить к образованию разных изоформ одного и того же белка. Например, ген тропонина состоит из 18 экзонов и кодирует многочисленные изоформы этого мышечного белка. Разные изоформы тропонина образуются в разных тканях на определённых стадиях их развития.

В. Процессинг первичных транскриптов рибосомной РНК и транспортной РНК

Гены, кодирующие большую часть структурных РНК, транскрибируются РНК-полимера-зами I и III. Нуклеиновые кислоты - предшественники рРНК и тРНК - подвергаются в ядре расщеплению и химической модификации (процессингу).

Посттранскрипционные модификации первичного транскрипта тРНК (процессинг тРНК)

Первичный транскрипт тРНК содержит около 100 нуклеотидов, а после процессинга - 70-90 нуклеотидньгх остатков. Посттранскрипционные модификации первичных транскриптов тРНК происходят при участии РНК-аз (рибонуклеаз). Так, формирование 3"-конца тРНК катализирует РНК-аза, представляющая собой 3"-экзонуклеазу, "отрезающую" по одному нук-леотиду, пока не достигнет последовательности -ССА, одинаковой для всех тРНК. Для некоторых тРНК формирование последовательности -ССА на 3"-конце (акцепторный конец) происходит в результате последовательного присоединения этих трёх нуклеотидов. Пре-тРНК содержит всего один интрон, состоящий из 14-16 нуклеотидов. Удаление интрона и сплайсинг приводят к формированию структуры, называемой "антикодон", - триплета нуклеотидов, обеспечивающего взаимодействие тРНК с комплементарным кодоном мРНК в ходе синтеза белков (рис. 4-34).

Посттранскрипционные модификации (процессинг) первичного транскрипта рРНК. Формирование рибосом

В клетках человека содержится около сотни копий гена рРНК, локализованных группами на пяти хромосомах. Гены рРНК транскрибируются РНК-полимеразой I с образованием идентичных транскриптов. Первичные транскрипты имеют длину около 13 000 нуклеотид-ных остатков (45S рРНК). Прежде чем покинуть ядро в составе рибосомной частицы, молекула 45 S рРНК подвергается процессин-гу, в результате образуется 28S рРНК (около 5000 нуклеотидов), 18S рРНК (около 2000 нуклеотидов) и 5,88 рРНК (около 160 нуклеотидов), которые являются компонентами рибосом (рис. 4-35). Остальная часть транскрипта разрушается в ядре.

Рис. 4-34. Процессинг пре-тРНК. Определённые азотистые основания нукпеотидов тРНК в ходе процессинга метилируются под действием РНК-метилазы и превращаются, например, в 7-метилгуанозин и 2-метилгуанозин (минорные основания). В молекуле тРНК содержатся и другие необычные основания - псевдоуридин, дигидроуридин, которые также модифицируются во время процессинга.

Рис. 4-35. Образование и выход из ядра субъединиц рибосом. В результате процессинга из молекулы предшественника 45S рРНК образуются три типа рРНК: 18S, входящая в состав малой субъединицы рибосом, а также 28S и 5,8S, локализующиеся в большой субъединице. Все три рРНК образуются в равных количествах, так как они происходят из одного и того же первичного транскрипта. 5S рРНК большой субъединицы рибосом транскрибируется отдельно от первичного транскрипта 45S рРНК. Рибосомальные РНК, образованные в ходе посттранскрипционных модификаций, связываются со специфическими белками, и образуется рибосома.

Рибосома - органелла клетки, участвующая в биосинтезе белка. Рибосома эукариотов (80S) состоит из двух, большой и малой, субъединиц: 60S и 40S. Белки рибосом выполняют структурную, регуляторную и каталитическую функции.

В биологии процессы транскрипции и трансляции рассматривают в рамках биосинтеза белка. Хотя в процессе транскрипции никакого синтеза белка не происходит. Но без нее невозможна трансляция (т. е. непосредственный синтез белка). Транскрипция предшествует трансляции.

Протекающие в клетках транскрипция и трансляция согласуются с так называемой догмой молекулярной биологии (выдвинутой Ф. Криком в середине XX века): поток информации в клетках идет в направлении от нуклеиновых кислот (ДНК и РНК) к белкам, но никогда наоборот (то есть от белков к нуклеиновым кислотам). Это значит, что нуклеиновая кислота может служить информационной матрицей для синтеза белка, а белок не может выступать таковой для синтеза нуклеиновой кислоты.

Транскрипция

Транскрипция представляет собой синтез молекулы РНК на молекуле ДНК . То есть ДНК служит матрицей для синтеза РНК.

Транскрипция катализируется рядом ферментов, наиболее важный РНК-полимераза. Следует помнить, что ферменты - это в основном белки (это касается и РНК-полимеразы).

РНК-полимераза движется по двойной цепи ДНК, разъединяет цепочки и на одной из них по принципу комплементарности строит молекулу РНК из плавающих в ядре нуклеотидов. Таким образом, РНК по-сути идентична участку другой цепи ДНК (на которой не происходит синтез), так как цепи молекулы ДНК также комплементарны друг другу. Только в РНК тимин заменен на урацил.

Синтез нуклеиновых кислот происходит в направлении от 5"-конца молекул к их 3"-концу. При этом комплементарные цепи всегда антипараллельны (направлены в разные стороны). Поэтому сама РНК синтезируется в направлении 5"→3", но по цепи ДНК движется в ее направлении 3"→5".

Участок ДНК, на котором происходит транскрипция (транскриптон, оперон), состоит из трех частей: промотора, гена (в случае иРНК, вообще - транскрибируемой части) и терминатора.

Для инициации (начала) транскрипции нужны различные белковые факторы, которые прикрепляются к промотору, после чего к ДНК может быть присоединена РНК-полимераза.

Терминация (окончание) транскрипции происходит после того, как РНК-полимераза встретит один из стоп-кодонов.

У клеток эукариот транскрипция происходит в ядре. После синтеза молекулы РНК здесь же подвергаются созреванию (из них вырезаются ненужные участки, молекулы принимают соответствующую им вторичную и третичную структуру). Далее различные типы РНК выходят в цитоплазму, где участвуют в следующем после транскрипции процессе – трансляции.

Трансляция

Трансляция представляет собой синтез полипептидной (белковой) цепи на молекуле информационной (она же матричная) РНК. По-другому трансляцию можно описать как перевод информации, закодированной с помощью нуклеотидов (триплетов-кодонов), в информацию, представленную в виде последовательности аминокислот. Этот процесс протекает при участии рибосом (в состав которых входит рибосомальная РНК) и транспортной РНК. Таким образом, в непосредственном синтезе белка принимают участие все три основных типа РНК .

При трансляции рибосомы насаживаются на начало цепи иРНК и далее движутся по ней в направлении к ее концу. При этом происходит синтез белка.

Внутри рибосомы есть два «места», где могут поместиться две тРНК. Транспортные РНК, заходящие в рибосому, несут одну аминокислоту. Внутри рибосомы синтезируемая полипептидная цепь присоединяется к вновь прибывшей аминокислоте, связанной с тРНК. После чего эта тРНК передвигается на другое «место», из него же удаляется «старая», уже свободная от растущей полипепдидной цепи тРНК. На освободившееся место приходит еще одна тРНК с аминокислотой. И процесс повторяется.

Активный центр рибосомы катализирует образование пептидной связи между вновь прибывшей аминокислотой и ранее синтезированным участком белка.

В рибосому помещаются два кодона (всего 6 нуклеотидов) иРНК. Антикодоны тРНК, заходящих в рибосому, должны быть комплементарны кодонам, на которых «сидит» рибосома. Разным аминокислотам соответствуют разные тРНК (различающиеся своими антикодонами).

Таким образом, каждая тРНК несет свою аминокислоту. При этом следует иметь в виду, что аминокислот, принимающих участие в биосинтезе белка, всего около 20, а смысловых (обозначающих аминокислоту) кодонов около 60-ти. Следовательно, одну аминокислоту могут переносить разные тРНК, но их антикодоны соответствуют одной и той же аминокислоте.

Транскрипция - это процесс синтеза молекулы РНК на участке ДНК , используемом в качестве матрицы. Смысл транскрипции заключается в переносе генетической информации с ДНК на РНК .

Молекула ДНК состоит из двух комплиментарных друг другу цепей, а РНК - только из одной. При транскрипции матрицей для синтеза РНК служит только одна из цепей ДНК. Ее называют смысловой цепью . Исключением является митохондриальная ДНК, в которой обе цепи являются смысловыми и содержат разные гены. Также как исключение на ядерной ДНК некоторые гены могут быть локализованы на несмысловой цепи.

При транскрипции молекула РНК синтезируется в направлении от 5" к 3" концу (что естественно для синтеза всех нуклеиновых кислот), при этом по цепи ДНК синтез идет в обратном направлении: 3"→5".

У эукариот каждый ген транскрибируется отдельно. Исключение опять же представляет митохондриальная ДНК, которая транскибируется на общий мультигенный транскрипт, который затем разрезается. Так как у прокариот гены образуют группы, формируя один оперон, то такие гены транскрибируются вместе. В любом случае транскриптоном называют участок ДНК, состоящий из промотора, транскрибируемого участка и терминатора.

В транскрипции выделяют 3 стадии: инициация, элонгация, терминация .

Инициация транскрипции позволяет начаться синтезу молекулы РНК. Инициация включает присоединение к промотору комплекса ферментов. Главным из них является РНК-полимераза (в данном случае ДНК-зависимая), которая, в свою очередь, состоит из нескольких белков-субъединиц и играет роль катализатора процесса. У эукариот на инициацию транскрипции влияют особые участки ДНК: энхансеры (усиливают) и сайленсеры (подвляют), которые обычно удаленные на некоторое расстояние от самого гена. Существуют различные белковые факторы, влияющие на возможность инициации транскрипции.

У прокариот имеется только один тип РНК-полимеразы, в то время как у эукариот их три. РНК-полимераза-1 используется для синтеза трех видов рибосомальной РНК (всего существует 4 вида рРНК). РНК-полимераза-2 используется для синтеза пре-иРНК (предшественника информационной) РНК. РНК-полимераза-3 синтезирует один из видов рибосомальной РНК, транспортную и малую ядерную.

РНК-полимераза способна распознавать определенные последовательности нуклеотидов и прикрепляется к ним. Эти последовательности короткие и универсальные для всего живого.

После того, как РНК-полимераза присоединяется к промотору, участок двойной спирали ДНК раскручивается и между цепочками этого участка разрываются нуклеотидные связи. Расплетается примерно 18 пар нуклеотидов.

На стадии элонгации происходит последовательное присоединение по принципу комплиментарности свободных нуклеотидов к освобожденному участку ДНК. РНК-полимераза соединяет нуклеотиды в полирибонуклеотидную цепочку.

При синтезе РНК около 12 ее нуклеотидов комплементарно временно связаны с нуклеотидами ДНК. При движении РНК-полимеразы впереди нее цепочки ДНК расходятся, а сзади «сшиваются» с помощью ферментов. Цепь РНК постепенно растет и выдвигается из комплекса РНК-полимеразы.

Существуют элонгирующие факторы, препятствующие преждевременной остановки транскрипции.

Терминация процесса транскрипции происходит в участке-терминаторе, который распознается РНК-полимеразой благодаря специальным белковым факторам терминации.

К 3"-концу синтезированной молекулы РНК присоединяется множество адениновых нуклеотидов (поли-А) для предотвращения ее ферментативного распада. Еще ранее, когда был синтезирован 5"-конец, на нем был образован так называемый кэп .

В большинстве случаев в результате транскрипции не получается готовая РНК. «Сырая» РНК должна еще пройти процесс процессинга , при котором происходят ее модификационные изменения и она становится функционально активной. Каждый тип РНК эукариот подвергается своим модификациям. Формирование поли-А и кэпа часто также относят к процессингу.