Исследование модельных свойств различных моделей бумажных самолетов. Исследовательская работа

Исследование модельных свойств различных моделей бумажных самолетов. Исследовательская работа "Исследование летательных свойств различных моделей бумажных самолётов". Они и не такое могут

Человек полетит, опираясь не на силу своих мускулов, а на силу своего разума.

(Н. Е. Жуковский)

Почему и как летает самолет Почему могут летать птицы несмотря на то что они тяжелее воздуха? Какие силы поднимают огромный пассажирский самолет, который может летать быстрее, выше и дальше любой птицы, ведь крылья его неподвижны? Почему планер, не имеющий мотора, может парить в воздухе? На все эти и многие другие вопросы дает ответ аэродинамика - наука, изучающая законы взаимодействия воздуха с движущимися в нем телами.

В развитии аэродинамики у нас в стране выдающуюся роль сыграл профессор Николай Егорович Жуковский (1847 -1921) - «отец русской авиации», как назвал его В. И. Ленин. Заслуга Жуковского состоит в том, что он первый объяснил образование подъемной силы крыла и сформулировал теорему для вычисления этой силы. Жуковский не только открыл законы, лежащие в основе теории полета, но и подготовил почву для бурного развития авиации в нашей стране.

При полёте на любой самолёт действуют четыре силы , сочетание которых не даёт ему упасть:

Сила тяжести - постоянная сила, которая притягивает самолёт к земле.

Сила тяги , которая исходит от двигателя и двигает самолёт вперёд.

Сила сопротивления , противоположная силе тяги и вызывается трением, замедляя самолёт и уменьшая подъёмную силу крыльев.

Подъёмная сила , которая образуется тогда, когда воздух, движущийся над крылом, создаёт пониженное давление. Подчиняясь законам аэродинамики, поднимаются в воздух все летательные аппараты, начиная с легких спортивных самолетов

Все самолёты на первый взгляд очень похожи, но если присмотреться, то можно найти в них отличия. Они могут отличаться крыльями, хвостовым опереньем, строением фюзеляжа. От этого зависит их скорость, высота полёта, и прочие манёвры. И у каждого самолёта только своя пара крыльев.

Чтобы полететь, не нужно размахивать крыльями, нужно заставить их двигаться относительно воздуха. А для этого крылу нужно просто сообщить горизонтальную скорость. От взаимодействия крыла с воздухом возникнет подъёмная сила, и, как только её величина окажется больше величины веса самого крыла и всего, что с ним связано, начнётся полёт. Дело остается за малым: сделать подходящее крыло и суметь разогнать его до необходимой скорости.

Наблюдательные люди очень давно заметили, что у птиц крылья не плоские. Рассмотрим крыло, у которого нижняя поверхность плоская, а верхняя - выпуклая.

Поток воздуха, набегающий на переднюю кромку крыла, делится на две части: одна обтекает крыло снизу, другая - сверху. Сверху воздуху приходится пройти путь несколько больший, чем снизу, следовательно, сверху скорость воздуха будет тоже чуть больше, чем снизу. Известно, что с увеличением скорости давление в потоке газа падает. Вот и здесь давление воздуха под крылом оказывается выше, чем над ним. Разница давлений направлена вверх, вот вам и подъёмная сила. А если добавить угол атаки, то подъёмная сила ещё увеличится.

Как летит настоящий самолет?

Настоящее крыло самолета имеет каплевидную форму, за счет этого воздух, проходящий сверху крыла, двигается быстрее по сравнению с воздухом, проходящим внизу крыла. Эта разница в воздушных потоках создает подъемную силу и самолет летит.

А основополагающая идея здесь такова: воздушный поток разрезается надвое передней кромкой крыла, и часть его обтекает крыло вдоль верхней поверхности, а вторая часть - вдоль нижней. Чтобы двум потокам сомкнуться за задней кромкой крыла, не образуя вакуума, воздух, обтекающий верхнюю поверхность крыла, должен двигаться быстрее относительно самолета, чем воздух, обтекающий нижнюю поверхность, поскольку ему нужно преодолеть большее расстояние.

Низкое давление сверху втягивает крыло на себя, а более высокое снизу подталкивает его вверх. Крыло поднимается. И если подъемная сила превышает вес самолета, то и сам самолет зависает в воздухе.

У бумажных самолётов нет профильных крыльев, так как же они летают? Подъёмную силу создаёт угол атаки их плоских крыльев. Даже в случае плоских крыльев можно заметить, что воздух, движущийся над крылом проходит немного больший путь (и движется быстрее). Подъёмную силу создаёт то же самое давление, что и у профильных крыльев, но, конечно, эта разница в давлении не столь велика.

Угол атаки самолета - угол между направлением скорости набегающего на тело потока воздуха и характерным продольным направлением, выбранным на теле, например у самолета это будет хорда крыла, - продольная строительная ось, у снаряда или ракеты - их ось симметрии.

Прямое крыло

Достоинством прямого крыла является его высокий коэффициент подъемной силы это позволяет существенно увеличивать удельную нагрузку на крыло, а значит, уменьшать габариты и массу, не опасаясь значительного увеличения скорости взлета и посадки.

Недостатком, предопределяющим непригодность такого крыла при сверхзвуковых скоростях полета, является резкое увеличение лобового сопротивления самолета

Треугольное крыло

Треугольное крыло жёстче и легче прямого и чаще всего используется при сверхзвуковых скоростях. Применение треугольного крыла определяется главным образом прочностными и конструктивными соображениями. Недостатками треугольного крыла являются возникновение и развитие волнового кризиса.

ВЫВОД

Если при моделировании изменять форму крыла и носа бумажного самолетика, то может измениться дальность и продолжительность его полета

Крылья бумажного самолета - плоские. Чтобы обеспечить разницу в воздушных потоках сверху и снизу крыла (чтобы образовалась подъемная сила) оно должно быть наклонено на определенный угод (угол атаки).

Самолеты для максимально длительных полетов не отличаются жесткостью, зато имеют большой размах крыльев, хорошо сбалансированы.



ФИЗИКА БУМАЖНОГО САМОЛЕТИКА.
ПРЕДСТАВЛЕНИЕ ОБЛАСТИ ЗНАНИЯ. ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТА.

1. Введение. Цель работы. Общие закономерности развития области знаний. Выбор объекта исследования. Mind map.
2. Элементарная физика полета планера (БС). Система уравнений сил.





9. Фотографии аэродинамической Обзор характеристик трубы, аэродинамические весы.
10. Результаты экспериментов.
12. Некоторые результаты по визуализации вихрей.
13. Связь параметров и конструктивных решений. Сравнение приведенных к прямоугольному крылу вариантов. Положение аэродинамического центра и цетра тяжести и характеристик моделей.
14. Энергетически эффективное планирование. Стабилизация полета. Тактика мирового рекорда для продолжительности полета.



18. Заключение.
19. Список литературы.

1. Введение. Цель работы. Общие закономерности развития области знаний. Выбор объекта исследований. Mind map.

Развитие современной физики, прежде всего в экспериментальной ее части, а особенно - в прикладных областях, происходит по ярко выраженной иерархической схеме. Это вызвано необходимостью в дополнительной концентрации ресурсов, необходимых для достижения результатов, начиная от материального обеспечения экспериментов, до распределения работ между специализированными научными институтами. Независимо, осуществляется ли это от лица государства, коммерческих структур или даже энтузиастов, но планирование развития области знаний, менеджмент научных исследований - это современная реальность.
Цель данной работы - это не только постановка локального эксперимента, но и попытка иллюстрации современной технологии научной организации на простейшем уровне.
Первые размышления, предшествующие собственно работе, обычно фиксируются в свободной форме, исторически это происходит на салфетках. Однако в современной науке подобная форма изложения называется mind mapping - дословно “схема мышления”. Она представляет собой схему, в которую в виде геометрических фигур вписывается все. что может относиться к рассматриваемому вопросу. Эти понятия соединяются стрелками, указывающие на логические связи. На первых порах такая схема может содержать совершенно различные и неравные понятия, которые сложно объединить в классический план. Однако такая пестрота позволяет найти место для случайных догадок и несистематизированной информации.
В качестве объекта исследований был выбран бумажный самолетик - вещь, знакомая каждому с детства. Предполагалось, что постановка ряда экспериментов и приложение понятий элементарной физики помогут объяснить особенности полета, а также, возможно, позволят сформулировать общие принципы конструирования.
Предварительный сбор информации показал, что область не так проста, как это казалось сначала. Большую помощь оказали исследования Кена Блэкберна, аэрокосмического инженера, обладателя четырех мировых рекордов (в том числе и действующего) на время планирования, которые он установил с самолетиками собственной конструкции.

Применительно к поставленной задаче mind map выглядит следующим образом:

Это базовая схема, представляющая предполагаемую структуру исследования.

2. Элементарная физика полета планера. Система уравнений для весов.

Планирование - частный случай снижения самолета без участия тяги, создаваемой двигателем. Для безмоторных летательных аппаратов - планеров, как частный случай - бумажных самолетиков, планирование является основным режимом полета.
Осуществляется планирование за счет уравновешивающих друг друга веса и аэродинамической силы, в свою очередь состоящей из подъемной силы и силы лобового сопротивления.
Векторная схема сил, действующих на самолет (планер) при полете выглядит следующим образом:

Условием прямолинейности планирования является равенство

Условие равномерности планирования - равенство

Таким образом для поддержания прямолинейного равномерного планирования требуется соблюдение обоих равенств, системы

Y=GcosA
Q=GsinA

3. Углубляясь в базовую теорию аэродинамики. Ламинарность и турбулентность. Число Рейнольдса.

Более детальное представление о полете дает современная аэродинамическая теория, базирующаяся на описании поведения разных видов потоков воздуха, в зависимости от характера взаимодействия молекул. Различают два основных вида потоков - ламинарный, когда частицы движутся по плавным и параллельным кривым, и турбулентный, когда они перемешиваются. Как правило, не существует ситуаций с идеально ламинарным или чисто турбулентным потоком, взаимодействие и тех и других и создает реальную картину работы крыла.
Если мы рассматриваем конкретный объект с конечными характеристиками - массой, геометрическими размерами, то свойства обтекания потоком на уровне молекулярного взаимодействия характеризуются числом Рейнольдса, которое дает относительное значение и обозначает отношение импульсов силы к вязкости жидкости. Чем больше число, тем меньше влияния вязкости.

Re= VLρ/η=VL/ν

V (скорость)
L (характеристика размера)
ν (коэф (плотность/ вязкость)) = 0,000014 м^2/с для воздуха при обычной температуре.

Для бумажного самолетика число Рейнольдса составляет около 37000.

Так как число Рейнольдса гораздо меньше, чем у настоящих самолетов, это значит, что вязкость воздуха играет куда более значительную роль, в результате чего возрастает сопротивление и уменьшается подъемная сила.

4. Как работают обычное и плоское крыло.

Плоское крыло с точки зрения элементарной физики представляет собой пластину, расположенную под углом к движущемуся потоку воздуха. Воздух “отбрасывается” под углом вниз, создавая противоположно направленную силу. Это и есть полная аэродинамическая сила, которая может быть представлена в виде двух сил - подъемной и лобового сопротивления. Такое взаимодействие легко объясняется на основе третьего закона Ньютона. Классический пример плоского крыла-отражателя - воздушный змей.

Поведение обычной (плоско-выпуклой) аэродинамической поверхности объясняется классической аэродинамикой как появление подъемной силы за счет разницы скоростей фрагментов потока и, соответственно, разницы давлений снизу и сверху крыла.

Плоское бумажное крыло в потоке создает вихревую зону сверху, которая является подобием выгнутого профиля. Он менее устойчив и эффективен, чем жесткая оболочка, но механизм работы тот же.

Рисунок взят из источника (См. список литературы). На нем видно формирование аэродинамического профиля за счет турбулентности на верхней поверхности крыла. Существует и понятие переходного слоя, в котором турбулентный поток переходит в ламинарный за счет взаимодействия слоев воздуха. Над крылом бумажного самолетика он составляет до 1 сантиметра.

5. Обзор трех конструкций самолетов

Для эксперимента были выбраны три разные конструкции бумажных самолетов, обладающих разными характеристиками.

Модель №1. Самая распространенная и общеизвестная конструкция. Как правило, большинство представляет себе именно ее, когда слышит выражение “бумажный самолет”.

Модель №2. “Стрела”, или “Копье”. Характерная модель с острым углом крыла и предполагаемой высокой скоростью.

Модель №3. Модель с крылом большого удлинения. Особенная конструкция, собирается по широкой стороне листа. Предполагается, что она обладает хорошими аэродинамическими данными из-за крыла большого удлинения.

Все самолеты собирались из одинаковых листов бумаги с удельным весом 80 грамм/м^2 формата А4. Масса каждого самолета - 5 грамм.

6. Наборы характеристик, почему они.

Для получения характерных параметров для каждой конструкции нужно собственно определить эти параметры. Масса всех самолетов одинакова - 5 грамм. Можно достаточно просто измерить скорость планирования для каждой конструкции и угол. Отношение разницы высот и соответствующей дальности даст нам аэродинамическое качество, по сути, тот же угол планирования.
Представляет интерес измерение подъемной силы и силы сопротивления на разных углах атаки крыла, характер их изменений на пограничных режимах. Это позволит охарактеризовать конструкции на основе численных параметров.
Отдельно можно проанализировать геометрические параметры бумажных самолетов - положение аэродинамического центра и центра тяжести для разных форм крыла.
Визуализацией потоков можно достичь наглядного изображения процессов происходящих в пограничных слоях воздуха вблизи аэродинамических поверхностей.

7. Предварительные эксперименты (камера). Полученные значения для скорости и аэродинамического качества.

Для определения базовых параметров был проделан простейший эксперимент - полет бумажного самолетика фиксировался видеокамерой на фоне стены с нанесенной метрической разметкой. Поскольку известен межкадровый интервал для видеосъемки (1/30 секунды), можно легко вычислить скорость планирования. По падению высоты на соответствующих кадрах находятся угол планирования и аэродинамическое качество самолета.

В среднем, скорость самолетика - 5-6 м/с, что не так у ж и мало.
Аэродинамическое качество - порядка 8.

8. Требования к эксперименту, Инженерное задание.

Чтобы воссоздать условия полета, нам нужен ламинарный поток со скоростью до 8 м/с и возможность измерить подъемную силу и сопротивление. Классический способ аэродинамических исследований - аэродинамическая труба. В нашем случае ситуация упрощается тем, что сам самолетик имеет небольшие размеры и скорость и может быть непосредственно помещен в трубу ограниченных размеров.
Следовательно, нам не мешает ситуация, когда продуваемая модель существенно отличается по габаритам от оригинала, что, в силу различия чисел Рейнольдса, требует компенсации при измерениях.
При сечении трубы 300x200 мм и скорости потока - до 8 м/с нам понадобится вентилятор с производительностью не менее 1000 куб.м/час. Для изменения скорости потока необходим регулятор скорости двигателя, а для измерения - анемометр с соответствующей точностью. Измеритель скорости не обязательно должен быть цифровым, вполне реально обойтись отклоняемой пластиной с градуировкой по углу или жидкостным анемометром, который имеет большую точность.

Аэродинамическую труба известна достаточно давно, ее применял в исследованиях еще Можайский, а Циолковский и Жуковский уже детально разработали современную технику эксперимента, которая принципиально не изменилась.
Для измерения силы сопротивления и подъемной силы применяются аэродинамические весы, позволяющие определить усилия в нескольких направлениях (в нашем случае - в двух).

9. Фотографии аэродинамической трубы. Обзор характеристик трубы, аэродинамические весы.

Настольная аэродинамическая труба была реализована на основе достаточно мощного промышленного вентилятора. За вентилятором расположены взаимно перпендикулярные пластины, спрямляющие поток перед попаданием в измерительную камеру. Окна в измерительной камеры снабжены стеклами. В нижней стенке прорезано прямоугольное отверстие для держателей. Непосредственно в измерительной камере установлена крыльчатка цифрового анемометра для измерения скорости потока. Труба имеет небольшое сужение на выходе для “подпора” потока, позволяющее снизить турбулентность ценой уменьшения скорости. Частота вращения вентилятора регулируется простейшим бытовым электронным регулятором.

Характеристики трубы оказались хуже расчетных, главным образом из-за несоответствия производительности вентилятора паспортным характеристикам. Подпор потока тоже снизил скорость в зоне измерений на 0.5 м/с. В результате максимальная скорость - чуть выше 5 м/с, что, тем не менее, оказалось достаточным.

Число Рейнольдса для трубы:

Re = VLρ/η = VL/ν

V (скорость) = 5м/c
L (характеристика)= 250мм = 0,25м
ν (коэф (плотность/ вязскость)) = 0,000014 м2/с

Re = 1,25/ 0,000014 = 89285,7143

Для измерений сил, действующих на самолет использовались элементарные аэродинамические весы с двумя степенями свободы на основе пары электронных ювелирных весов с точностью 0.01 грамм. Самолет фиксировался на двух стойках под нужным углом и устанавливался на платформу первых весов. Те, в свою очередь, размещались на подвижной площадке с рычажной передачей горизонтального усилия на вторые весы.

Измерения показали, что точность вполне достаточна для базовых режимов. Однако, было сложно фиксировать угол, поэтому лучше разработать соответствующую схему крепления с разметкой.

10. Результаты экспериментов.

При продувке моделей измерялись два основных параметра - сила сопротивления и подъемная сила в зависимости от скорости потока при заданном угле. Было построено семейство характеристик с достаточно реалистичными значениями, позволяющие описать поведение каждого самолета. Результаты сведены в графики с дальнейшим нормированием масштаба относительно скорости.

11. Соотношения кривых для трех моделей.

Модель №1.
Золотая середина. Конструкция максимально соответствует материалу - бумаге. Прочность крыльев соответствует длине, развесовка оптимальна, поэтому правильно сложенный самолет хорошо выравнивается и плавно летит. Именно сочетание таких качеств и легкость сборки сделало эту конструкцию такой популярной. Скорость меньше, чем у второй модели, но больше, чем у третьей. На больших скоростях уже начинает мешать широкий хвост, до этого прекрасно стабилизирующий модель.

Модель №2.
Модель с наихудшими летными характеристиками. Большая стреловидность и короткие крылья призваны лучше работать на высоких скоростях, что и происходит, но подъемная сила растет недостаточно и самолет действительно летит как копье. Кроме того, он не стабилизируется в полете должным образом.

Модель №3.
Представитель “инженерной” школы - модель задумывалась со специальными характеристиками. Крылья большого удлинения действительно работают лучше, но сопротивление растет очень быстро - самолет летает медленно и не терпит ускорений. Для компенсации недостаточной жесткости бумаги используются многочисленные складки в носке крыла, что тоже увеличивает сопротивление. Тем не менее, модель очень показательна и летает хорошо.

12. Некоторые результаты по визуализации вихрей

Если внести в поток источник дыма, то можно увидеть и сфотографировать потоки, огибающие крыло. В нашем распоряжении не было специальных генераторов дыма, мы использовали палочки благовоний. Для увеличения контраста использовался специальный фильтр для обработки фотографий. Скорость потока также уменьшалась, поскольку плотность дыма была невысока.

Формирование потока на передней кромке крыла.

Турбулентный “хвост”.

Также потоки можно исследовать с помощью коротких нитей, приклеиваемых на крыло, либо тонким щупом с ниткой на конце.

13. Связь параметров и конструктивных решений. Сравнение приведенных к прямоугольному крылу вариантов. Положение аэродинамического центра и центра тяжести и характеристик моделей.

Уже отмечалось, что бумага как материал имеет много ограничений. Для малых скоростей полета длинные узкие крылья имеют лучшее качество. Не случайно реальные планеры, особенно рекордсмены, тоже имеют такие крылья. Однако для бумажных самолетов существуют технологические ограничения и их крылья не похожи на оптимальные.
Для анализа взаимосвязи геометрии моделей и их летных характеристик необходимо привести сложную форму к прямоугольному аналогу методом переноса площадей. Лучше всего с этим справляются компьютерные программы, позволяющие представить разные модели в универсальном виде. После преобразований описание сведется к базовым параметрам - размах, длина хорды, аэродинамический центр.

Взаимная связь этих величин и центра масс позволит зафиксировать характерные значения для различных типов поведения. Эти расчеты выходят за рамки данной работы, но могут быть легко проделаны. Однако можно принять, что центр тяжести для бумажного самолета с прямоугольными крыльями находится на расстоянии один к четырем от носа к хвосту, для самолета с крыльями “дельта” - на одной второй (так называемая нейтральная точка).

14. Энергетически эффективное планирование. Стабилизация полета.
Тактика мирового рекорда для времени продолжительности полета.

Исходя из кривых для подъемной силы и силы сопротивления, можно найти энергетически выгодный режим полета с наименьшими потерями. Это безусловно важно для дальних лайнеров, но и в бумажной авиации может пригодиться. Немного модернизируя самолетик (отгиб кромок, перераспределение веса) можно добиться лучших характеристик полета или наоборот, перевести полет в критический режим.
Вообще говоря, бумажные самолеты не меняют характеристики во время полета, потому они могут обойтись без специальных стабилизаторов. Хвост, создающий сопротивление позволяет сместит центр тяжести вперед. Прямолинейность полета сохраняется за счет вертикальной плоскости сгиба и за счет поперечного V крыльев.
Стабильность означает, что самолет, будучи отклоненным, стремится возвратиться в нейтральное положение. Смысл стабильности угла планирования в том, что самолет будет поддерживать одинаковую скорость. Чем стабильнее самолет, тем больше скорость, как у модели №2. Но, эту тенденцию необходимо ограничить - подъемная сила должна использоваться, поэтому лучшие бумажные самолеты, в большинстве, обладают нейтральной стабильностью, это лучшее сочетание качеств.
Однако не всегда установившиеся режимы - лучшие. Рекорд мира по продолжительности полета установлен с помощью очень специфической тактики. Во-первых, старт самолетика выполняется по вертикальной прямой, его просто забрасывают на максимальную высоту. Во-вторых, после стабилизации в верхней точке за счет взаимного расположения центра тяжести и эффективной площади крыла, самолетик должен сам перейти в нормальный полет. В-третьих, развесовка самолетика не нормальная - у него недогружена передняя часть, поэтому за счет большого сопротивления, которое не компенсирует вес, он очень быстро замедляется. При этом резко падает подъемная сила крыла, он клюет носом вниз и, падая, разгоняется рывком, но опять замедляется и зависает. Такие колебания (кабрирование) сглаживаются за счет инерции в точках замирания и в итоге общее время нахождения в воздухе больше нормального равномерного планирования.

15. Немного о синтезе конструкции с заданными характеристиками.

Предполагается, что определив главные параметры бумажного самолета, их взаимосвязь и тем самым завершив стадию анализа, можно перейти к задаче синтеза - на основе необходимых требований создать новую конструкцию. Эмпирически, любители во всем мире так и поступают, количество конструкций перевалило за 1000. Но окончательного численного выражения для такой работы не существует, как и не существует каких-то особых препятствий для совершения подобных исследований.

16. Практические аналогии. Белка-летяга. Винг-сьют.

Понятно, что бумажный самолетик - это в первую очередь просто источник радости и прекрасная иллюстрация для первого шага в небо. Сходный принцип парения на практике используют только белки-летяги, не имеющие большого народно-хозяйственного значения, по крайней мере, в нашей полосе.

Более практичным подобием бумажному самолету является “Wing suite” - костюм-крыло для парашютистов, позволяющий осуществлять горизонтальный полет. Кстати, аэродинамическое качество такого костюма меньше, чем у бумажного самолета - не больше 3-х.

17. Возврат к mind map. Уровень проработки. Образовавшиеся вопросы и варианты дальнейшего развития исследований.

С учетом проведенной работы мы можем нанести на mind map раскраску, индицирующую выполнение поставленных задач. Зелёным цветом здесь обозначены пункты, которые находятся на удовлетворительном уровне, светло-зеленым - вопросы, которые имеют некоторые ограничения, желтым - области затронутые, но не разработанные в должной мере, красным - перспективные, нуждающиеся в дополнительном исследовании.

18. Заключение.

В результате работы была изучена теоретическая база полета бумажных самолетов, спланированы и осуществлены эксперименты, позволившие определить численные параметры для разных конструкций и общие взаимосвязи между ними. Затронуты и сложные механизмы полета, с точки зрения современной аэродинамики.
Описаны основные параметры, влияющие на полет, даны комплексные рекомендации.
В общей части произведена попытка систематизации области знаний на основе mind map, намечены основные направления для дальнейших исследований.

19. Список литературы.

1. Paper plane aerodynamics [Электронный ресурс] / Ken Blackburn - режим доступа: http://www.paperplane.org/paero.htm , свободный. - Загл. с экрана. - Яз. англ.

2. К Шютт. Введение в физику полета. Перевод Г.А. Вольперта с пятого немецкого издания. - М.: Объединенное научно-техническое издательство НКТП СССР. Редакция технико-теоретической литературы, 1938. - 208 с.

3. Стахурский А. Для умелых рук: Настольная аэродинамическая труба. Центральная станция юных техников имени Н.М. Шверника - М.: Министерство культуры СССР. Главное управление полиграфической промышленности, 13-я типография, 1956. - 8 с.

4. Мерзликин В. Радиоуправляемые модели планеров. - М,: Издательство ДОСААФ СССР, 1982. - 160 с.

5. А.Л. Стасенко. Физика полета. - М,: Наука. Главная редакция физико-математической литературы, 1988, - 144 с.

Для того, чтобы сделать самолетик из бумаги, потребуется прямоугольный бумажный лист, который может быть как белым, так и цветным. По желанию можно использовать тетрадную, ксероксную, газетную или любую другую бумагу, которая имеется в наличии.

Плотность основы для будущего самолета лучше выбирать ближе к средней, чтобы он далеко летал и при этом его было не слишком трудно складывать (на слишком плотной бумаге обычно сложно фиксировать сгибы и они получаются неровными).

Складываем самую простую фигурку самолета

Начинающим любителям оригами лучше начать с самой простой, знакомой всем с детства модели самолетика:

Для тех, кому не удалось сложить самолет по инструкции, приводим видео мастер-класс:

Если этот вариант надоел еще в школе и вы хотите расширить свои навыки бумажного самолетостроения, расскажем как поэтапно выполнить две несложные вариации предыдущей модели.

Самолет-дальнобойщик

Пошаговая фото-инструкция

  1. Складываем прямоугольный лист бумаги пополам по большей стороне. Загибаем два верхних угла к середине листа. Отворачиваем получившийся угол «долиной», то есть на себя.

  1. Загибаем углы образовавшегося прямоугольника к середине таким образом, чтобы выглядывал небольшой треугольник посередине листа.

  1. Отгибаем маленький треугольник кверху - он будет фиксировать крылья будущего самолета.

  1. Складываем фигуру по оси симметрии, учитывая, что маленький треугольник должен остаться снаружи.

  1. Загибаем крылья с обоих боков к основе.

  1. Выставляем под углом 90 градусов оба крыла самолета, чтобы далеко летал.

  1. Таким образом, не потратив много времени, получаем далеколетный самолетик!

Схема складывания

  1. Складываем бумажный прямоугольный лист вдоль его большей стороны пополам.

  1. Загибаем два верхних угла к середине листа.

  1. Заворачиваем «долиной» углы по пунктирной линии. В технике оригами «долиной» называется выполнение сгиба участка листа по определенной линии в направлении «на себя».

  1. Складываем получившуюся фигуру по оси симметрии таким образом, чтобы уголки оказались снаружи. Обязательно проследите за тем, чтобы контуры обоих половинок будущего самолетика совпали. От этого зависит, как он будет в дальнейшем летать.

  1. Загибаем крылья по обоим бокам самолета, как показано на рисунке.

  1. Убедитесь, что угол между крылом самолета и его фюзеляжем составляет 90 градусов.

  1. Получился вот такой быстрый самолетик!

Как сделать так, чтобы самолетик далеко летал?

Хотите научиться правильно запускать бумажный самолет, который вы только сделали своими руками? Тогда внимательно ознакомьтесь с правилами его управления:

Если все правила соблюдаются, но модель все равно летает не так, как хотелось бы, попробуйте усовершенствовать ее следующим образом:

  1. Если самолет постоянно норовит резко взмыть вверх, а затем, совершая мертвую петлю, резко уходит вниз, врезаясь носом в землю, ему требуется апгрейд в виде увеличения плотности (веса) носовой части. Это можно сделать немного загнув нос бумажной модели вовнутрь, как показано на картинке, или прикрепив нему снизу канцелярскую скрепку.
  2. В случае, если при полете модель летит не прямо, как нужно, а в сторону, оснастите ее рулем поворота, загнув часть крыла по линии, изображенной на рисунке.
  3. Если самолетик уходит в штопор, ему срочно необходим хвост. Вооружившись ножницами, сделайте ему быстрый и функциональный апгрейд.
  4. А вот если, модель во время испытаний заваливается набок, скорее всего причиной неудачи служит отсутствие стабилизаторов. Чтобы добавить их к конструкции, достаточно загнуть крылья самолета по краям по указанным пунктиром линиям.

Также предлагаем вашему вниманию видео инструкцию по изготовлению и испытанию интересной модели самолета, который способен не только далеко, но и невероятно долго летать:

Теперь, когда вы уверены в своих силах и уже набили руку на складывании и запуске простых самолетиков, предлагаем инструкции, которые расскажут вам, как сделать самолет из бумаги более сложной модели.

Самолет-невидимка F-117 («Ночной ястреб»)

Самолет-бомбовоз

Схема выполнения

  1. Берем прямоугольный листок бумаги. Верхнюю часть прямоугольника складываем двойным треугольником: для этого отгибаем правый верхний угол прямоугольника таким образом, чтобы его верхняя сторона совпала с левой боковой стороной.
  2. Затем по аналогии загибаем левый угол, совмещая верхнюю часть прямоугольника с его правой боковой стороной.
  3. Через точку пересечения полученных линий выполняем сгиб, который в итоге должен быть параллелен меньшей стороне прямоугольника.
  4. По этой линии складываем внутрь получившиеся боковые треугольники. Должна получиться фигура, показанная на рисунке 2. Намечаем линию посередине листа в нижней части по аналогии с рисунком 1.

  1. Обозначаем линию, параллельную основанию треугольника.

  1. Переворачиваем фигуру на обратную сторону и отгибаем угол по направлению «на себя». Должна получиться следующая бумажная конструкция:

  1. Снова перекладываем фигуру на другую сторону и загибаем два уголка вверх, предварительно согнув верхнюю часть вдвое.

  1. Переворачиваем фигуру обратно и отгибаем угол вверх.

  1. Сворачиваем левый и правый углы, обведенные на рисунке кружком, в соответствии с картинкой 7. Такая схема позволит добиться правильного изгиба угла.

  1. Загибаем угол от себя и складываем фигуру по средней линии.

  1. Заводим края вовнутрь, вновь складываем фигуру пополам, а потом на себя.

  1. В конечном итоге, у вас получится вот такая бумажная игрушка - самолет-бомбовоз!

Бомбардировщик СУ-35

Истребитель «Остроносый ястреб»

Пошаговая схема выполнения

  1. Берем листик бумаги прямоугольной формы, сгибаем его пополам вдоль большей стороны и намечаем середину.

  1. Отгибаем по направлению «на себя» два угла прямоугольника.

  1. Сгибаем углы фигуры по пунктирной линии.

  1. Складываем фигуру поперек таким образом, чтобы острый угол оказался на середине противоположной стороны.

  1. Переворачиваем полученную фигуру на обратную сторону и формируем две складки, как показано на рисунке. Очень важно, чтобы складки были сложены не к средней линии, а под небольшим углом к ней.

  1. Получившийся угол сгибаем на себя и одновременно отворачиваем вперед угол, который после всех манипуляций будет находиться на обратной стороне макета. Должна получиться фигура, как показано на рисунке ниже.

  1. Загибаем фигуру пополам от себя.

  1. Опускаем крылья самолетика по пунктирной линии.

  1. Подгибаем немного концы крыльев для получения так называемых винглетов. Затем расправляем крылья так, чтобы они образовали с фюзеляжем прямой угол.

Бумажный истребитель готов!

Истребитель «Планирующий ястреб»

Инструкция по изготовлению:

  1. Берем прямоугольный листок бумаги и намечаем середину, сложив его пополам вдоль большей стороны.

  1. Загибаем внутрь к середине два верхних угла прямоугольника.

  1. Переворачиваем лист на обратную сторону и загибаем складки по направлению «на себя» к центральной линии. Очень важно, чтобы верхние углы при этом не перегибались. Должна получиться вот такая фигурка.

  1. Сворачиваем верхнюю часть квадрата по диагонали к себе.

  1. Получившуюся фигуру складываем пополам.

  1. Намечаем складочку также, как показано на рисунке.

  1. Заправляем внутрь прямоугольную часть фюзеляжа будущего самолетика.

  1. Отгибаем крылышки вниз по линии пунктира под прямым углом.

  1. Получился вот такой бумажный самолетик! Осталось посмотреть, как он летает.

Истребитель F-15 Eagle

Самолет «Конкорд»

Следуя приведенным фото- и видео-инструкциям вы сможете своими руками за несколько минут сделать самолет из бумаги, игра с которым станет приятным и занимательным времяпрепровождением для вас и ваших детей!

Невероятные факты

Многие из нас видели, а может и делали бумажные самолетики и запускали их, глядя, как они парят в воздухе.

А задумывались ли вы, кто первым создал бумажный самолет и зачем?

Сегодня бумажные самолеты делают не только дети, но и серьезные авиастроительные компании - инженеры и дизайнеры.

Как, когда и для чего использовались и до сих пор используются бумажные самолетики, можно узнать здесь.

Немного исторических фактов, связанных с летательными аппаратами из бумаги

* Первый бумажный самолетик был создан около 2 000 лет назад. Считается, что первыми, кто придумал делать самолетики из бумаги, были китайцы, которые также увлекались созданием летающих змеев из папируса.

* Использовать бумагу для полетов решили и братья Монгольфье - Жозеф-Мишель и Жак-Этьенн. Именно они изобрели воздушный шар и использовали для этого бумагу. Произошло это в 18-м веке.

* Леонардо да Винчи писал об использовании бумаги для создания моделей орнитоптера (воздушное судно).

* В начале 20-го века, журналы, рассказывавшие о летательных аппаратах, использовали изображения бумажных самолетов для объяснения принципов аэродинамики.

Читайте также: Как сделать бумажный самолетик

* В своем стремлении построить первый летательный аппарат, способный перевозить человека, братья Райт использовали бумажные самолеты и крылья в аэродинамических туннелях.

* В 1930-х годах, английский художник и инженер Уоллис Ригби спроектировал свой первый бумажный самолет. Эта идея показалась интересной нескольким издательствам, которые начали с ним сотрудничать и публиковать его бумажные модели, которые довольно просто было собрать. Стоит отметить, что Ригби старался делать не просто интересные модели, но и летающие.

* Так же в начале 1930-х годов Джек Нортроп из Lockheed Corporation использовал несколько бумажных моделей самолетов и крыльев для тестирования. Это делалось перед созданием настоящих больших самолетов.

* Во время Второй мировой войны, правительства многих государств ограничивали использование таких материалов, как пластик, металл и дерево, так как они считались стратегически важными. Бумага стала общедоступной и очень популярной в индустрии игрушек. Именно это сделало бумажное моделирование популярным.

* В СССР бумажное моделирование было также очень популярно. В 1959 году вышла в свет книга П. Л. Анохина "Бумажные летающие модели". В итоге, эта книга, на многие годы стала очень популярной среди моделистов. В ней можно было узнать об истории самолетостроения, а также о бумажном моделировании. Все бумажные модели быль оригинальными, к примеру, можно было найти летающую модель из бумаги самолета "Як".

Необычные факты про бумажные модели самолетов

* Согласно Ассоциации бумажного самолетостроения, самолет из бумаги, запущенный в открытый космос, не будет летать, он будет планировать по прямой линии. Если самолетик из бумаги не столкнется с каким-нибудь предметом, он может вечно парить в космосе.

* Самый дорогостоящий бумажный самолет был использован в космическом челноке во время очередного полета в космос. Одной лишь стоимости топлива, использованного для доставки самолета в космос на челноке, достаточно, чтобы назвать этот бумажный самолет самым дорогим.

* Самый большой размах крыльев бумажного самолета составляет 12, 22 см. Самолет с такими крыльями смог пролететь почти 35 метров, перед тем, как столкнулся со стеной. Такой самолет был сделан группой студентов с Факультета авиа- и ракетостроения из Политехнического института в Дельфте, Нидерланды.

Запуск был проведен в 1995 году, когда самолет запустили внутри здания с платформы, высотой 3 метра. По правилам самолет должен был пролететь около 15 метров. Если бы не ограниченное пространство, он бы пролетел намного дальше.


* Ученые, инженеры и студенты используют бумажные самолетики для изучения аэродинамики. Национальное управление по воздухоплаванию и исследованию космического пространства (НАСА) отправила бумажный самолетик в космос на космическом челноке.

* Бумажные самолеты можно делать различных форм. Согласно рекордсмену Кену Блэкбурну (Ken Blackburn), самолетики, сделанные в форме буквы "X,", обруча или футуристического космического корабля, могут летать, как и простые бумажные самолеты, если их сделать правильно.

* Специалисты НАСА совместно с космонавтами провели мастер-класс для школьников в ангаре своего исследовательского центра в 1992 году. Вместе они строили большие бумажные самолеты, размах крыльев которых мог достигать 9-ти метров.

* Самый маленький бумажный оригами-самолетик был создан под микроскопом господином Наито из Японии. Он сложил самолетик из листа бумаги размером 2,9 кв. миллиметра. После изготовления, самолетик был помещен на кончик швейной иглы.

* Самый продолжительный полет бумажного самолета состоялся 19 декабря 2010 года, и был запущен он японцем Такуо Тода (Takuo Toda), который является главой Японской ассоциации самолетиков-оригами. Длительность полета его модели, запущенной в городе Фукуяма, префектура Хиросима, составила 29,2 секунды.

Как сделать самолетик Такуо Тода

Робот собирает бумажный самолет

Панаиотов Георгий

Цель работы: Сконструировать самолеты, обладающие следующими характеристиками: максимальной дальностью и длительностью полета.

Задачи:

Проанализировать информацию, полученную из первоисточников;

Изучить элементы древнего восточного искусства аэрогами;

Познакомиться с основами аэродинамики, технологии конструирования летательных аппаратов из бумаги;

Провести испытания сконструированных моделей;

Выработать навыки правильного, результативного запуска моделей;

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Исследовательская работа « Исследование летательных свойств различных моделей бумажных самолетов»

Гипотеза: можно предположить, что лётные характеристики самолёта зависят от его формы.

Опыт № 1 « Принцип создания крыла» Воздух, перемещающийся по верхней поверхности полоски, оказывает меньшее давление, чем неподвижный воздух, находящийся под полоской. Он и поднимает полоску вверх.

Опыт № 2 Движущийся воздух оказывает меньшее давление, чем неподвижный воздух, который находится под листом.

Опыт № 3 «Дуновение» Неподвижный воздух по краям полосок оказывает более сильное давление, чем движущийся воздух между ними. Разность давления и толкает полоски друг к другу.

Испытания: Модель № 1 Попытка Дальность №1 6м 40см №2 10м 45см №3 8м

Испытания: Модель № 2 Попытка Дальность №1 10м 20см №2 14м №3 16м 90см

Испытания: Модель № 3 Попытка Дальность №1 13м 50см №2 12м №3 13м

Испытания: Модель № 4 Попытка Дальность № 1 13м 60см № 2 19м 70см № 3 21м 60см

Испытания: Модель № 5 Попытка Дальность № 1 9м 20см № 2 13м 20см № 3 10м 60см

Результаты испытаний: Чемпион в дальности полёта Модель № 4 Чемпион во времени нахождения в воздухе Модель №5

Вывод: Лётные характеристики самолёта зависят от его формы.

Предварительный просмотр:

Введение

Каждый раз, когда я вижу самолет – взмывающую в небо серебряную птицу, – я восхищаюсь мощью, с которой он легко преодолевает земное притяжение и бороздит небесный океан и задаю себе вопросы:

  • Как должно быть устроено крыло самолета, чтобы выдержать большой груз?
  • Какой должна быть оптимальная форма крыла, рассекающего воздух?
  • Какие характеристики ветра помогают самолету в его полете?
  • Какую скорость может развивать самолет?

Человек всегда мечтал подняться в небо «как птица» и издревле пытался воплотить свою мечту. В 20 веке авиация начала так быстро развиваться, что человечество не смогло сохранить многие подлинники этой сложной техники. Но многие образцы сохранились в музеях в виде уменьшенных макетов, дающих почти полное представление о реальных машинах.

Я выбрал эту тему, потому, что она помогает в жизни не только развить логическое техническое мышление, но и приобщиться к практическим навыкам работы с бумагой, материаловедением, технологией проектирования и конструирования летательных аппартаов. А самое главное - это создание своего самолёта.

Мы выдвинули гипотезу – можно предположить, что летные характеристики самолета зависят от его формы.

Мы использовали следующие методы исследования:

  • Изучение научной литературы;
  • Получение информации в сети Интернет;
  • Непосредственное наблюдение, экспериментирование;
  • Создание экспериментальных пилотных моделей самолетов;

Цель работы: Сконструировать самолеты, обладающие следующими характеристиками: максимальной дальностью и длительностью полета.

Задачи:

Проанализировать информацию, полученную из первоисточников;

Изучить элементы древнего восточного искусства аэрогами;

Познакомиться с основами аэродинамики, технологии конструирования летательных аппаратов из бумаги;

Провести испытания сконструированных моделей;

Выработать навыки правильного, результативного запуска моделей;

В основу моего исследования я взял одно из направлений японского искусства оригами - аэрогами (от яп. «гами» - бумага и лат. «аэро» - воздух).

Аэродинамика (от греческих слов aer – воздух и dinamis – сила) – это наука о силах, возникающих при движении тел в воздухе. Воздух, благодаря своим физическим свойствам, сопротивляется продвижению в нем твердых тел. При этом, между телами и воздухом возникают силы взаимодействия, которые и изучаются аэродинамикой.

Аэродинамика является теоретической основой современной авиации. Любой летательный аппарат, летит, подчиняясь законам аэродинамики. Поэтому для конструктора самолёта, знание основных законов аэродинамики, не только полезно, но и просто необходимо. Изучая законы аэродинамики, я провёл серию наблюдений и опытов: «Выбор формы летательного аппарата», «Принципы создания крыла», «Дуновение» и т. д.

Конструирование.

Сложить бумажный самолетик не так просто, как кажется. Действия должны быть уверенными и точными, сгибы – идеально прямыми и в нужных местах. Простые конструкции прощают ошибки, в сложной же пара неидеальных углов может завести процесс сборки в тупик. Кроме того, есть случаи, когда сгиб необходимо намеренно выполнить не очень точно.

Например, если на одном из последних шагов требуется сложить толстую многослойную конструкцию пополам, сгиб не получится, если не сделать поправку на толщину в самом начале складывания. Такие вещи не описываются в схемах, они приходят с опытом. А от симметрии и точной развесовки модели зависит, насколько хорошо она полетит.

Ключевой момент в «бумажной авиации» – расположение центра тяжести. Создавая различные конструкции, я предлагаю утяжелить нос самолета, разместив в нем больше бумаги, сформировать полноценные крылья, стабилизаторы, киль. Тогда бумажным самолетиком можно управлять, как настоящим.

Например, экспериментальным путём я выяснил, что скорость и траекторию полета можно корректировать, сгибая заднюю часть крыльев подобно настоящим закрылкам, слегка поворачивая бумажный киль. Такое управление лежит в основе «бумажной аэробатики».

Конструкции самолетов существенно различаются в зависимости от цели их постройки. К примеру, самолеты для полетов на большие дистанции по форме напоминают дротик – они такие же узкие, длинные, жесткие, с ярко выраженным смещением центра тяжести к носу. Самолеты для максимально длительных полетов не отличаются жесткостью, зато имеют большой размах крыльев, хорошо сбалансированы. Балансировка крайне важна для самолетов, запускаемых на улице. Они должны сохранять правильное положение, несмотря на дестабилизирующие колебания воздуха. Самолетам, запускаемым в помещении, полезно смещение центра тяжести к носу. Такие модели летают быстрее и стабильнее, их проще запускать.

Испытания

Для того чтобы достичь высоких результатов при запуске, необходимо овладеть правильной техникой броска.

  • Чтобы отправить самолет на максимальную дистанцию, нужно как можно сильнее бросить его вперед и вверх под углом 45 градусов.
  • В состязаниях на время полета следует забросить самолет на максимальную высоту, чтобы он дольше планировал вниз.

Запуск на открытом воздухе помимо дополнительных проблем (ветер) создает и дополнительные преимущества. Используя восходящие потоки воздуха, можно заставить самолет лететь невероятно далеко и долго. Сильный восходящий поток можно найти, к примеру, около большого многоэтажного дома: ударяясь о стену, ветер меняет направление на вертикальное. Более дружелюбную воздушную подушку можно отыскать в солнечный день на автомобильной парковке. Темный асфальт сильно нагревается, и горячий воздух над ним плавно поднимается вверх.

Основная часть

1.1 Наблюдения и опыты

Наблюдения

Выбор формы летательного аппарата. (Приложение 11)