На смещение химического равновесия обратимой реакции не влияет. Химическое равновесие и создание условий для его смещения. Химическое равновесие. Общая характеристика

На смещение химического равновесия обратимой реакции не влияет. Химическое равновесие и создание условий для его смещения. Химическое равновесие. Общая характеристика

Хим.равновесие -состояние системы,когда прям.и обр.реакции имеют один.скорости..В ходе процесса с уменьшением исходных веществ скорость прямой хим. реакции уменьшается, а скорость обратной с ростом С HI возрастает. В какой-то момент времениtскорость прямой и обратной хим. реакций приравниваются Состояние системы не изменяется пока не подействуеют внеш.факторы(Р,Т,с).Количественно состояние равновесия хар-ся с помощ.константы равновесия. Константа равновесия – Константа, отражающая соотношение концентраций компонентов обратимой реакции в состоянии хим равновесия. (зависит только от С).Для каж обратим хим. реакции в конкр усл как бы хар-ет собой тот предел, до которого идет хим. реакция. .K=.Если(концентрация исх )-необр реак;еслиравновесия смещается вправо- не протекает. Константа равновесия с изменением концентрации реагирующих веществ не изменяет своего значения. Дело в том, что изменение концентрации приводит лишь к смещению хим. равновесия в ту или иную сторону. При этом устанавливается новое равновесное состояние при той же константе. Истинное равновесие можно сместить в ту или иную сторонц действием каких-либо факторов. Но при отмене действия этих факторов система возвращается в исходное состояние.Ложное - состояние системы неизменно во времени, но при изменении внеіиних условий в системе происходит необратимый процесс(В темнотеH 2 +Cl 2 существует, при освещении обр-сяHCl. При прекращении освещения не вернемH 2 иCl 2).Изменение хотя бы одного из этих фак­торов приводит к смещению равновесия.Влияние различных факторов на состояние хим равн качест­венно описывается принципом смещения равновесия Ле Шателье (1884: при всяком внешнем воздействии на систему, находящуюся в состоянии химического равновесия, в ней протекают процессы, приводящие к уменьшению этого воздействия.

Константа равновесия

Константа равновесия показывает во сколько раз скорость прямой реакции больше или меньше скорости обратной реакции.

Константа равновесия – это отношение произведения равновесных концентраций продуктов реакции, взятых в степени их стехиометрических коэффициентов к произведению равновесных концентраций исходных веществ, взятых в степени их стехиометрических коэффициентов.

Величина константы равновесия зависит от природы реагирующих веществ и температуры, и не зависит от концентрации в момент равновесия, поскольку их отношение – всегда величина постоянная, численно равная константе равновесия. Если гомогенная реакция идет между веществами в растворе, то константа равновесия обозначается K С, а если между газами, то K Р.

где Р С, Р D , Р А и Р В – равновесные давления участников реакции.

Используя уравнение Клапейрона-Менделеева, можно определить связь между K Р и K С

Перенесем объем в правую сторону

р = RT, т. е. р = CRT (6.9)

Подставим уравнение (6.9) в (6.7), для каждого реагента и упростим

, (6.10)

где Dn – изменение числа молей газообразных участников реакции

Dn = (с + d ) – (а + в) (6.11)

Следовательно,

K Р = К С (RT) Dn (6.12)

Из уравнения (6.12) видно, что K Р = К С, если не меняется количество молей газообразных участников реакции (Dn = 0) или газы в системе отсутствуют.

Необходимо отметить, что в случае гетерогенного процесса концентрацию твердой или жидкой фазы в системе не учитывают.

Например, константа равновесия для реакции вида 2А + 3В = С + 4D, при условии, что все вещества газы и имеет вид

а если D – твердое, то

Константа равновесия имеет большое теоретическое и практическое значение. Численное значение константы равновесия позволяет судить о практической возможности и глубине протекания химической реакции.

10 4 , то реакция необратима

Смещение равновесия. Принцип Ле-Шателье.

принцип Ле-Шателье (1884): если на систему, находящуюся в устойчивом химическом равновесии воздействовать извне, изменяя температуру, давление или концентрацию, то химическое равновесие смещается в том направлении, при котором эффект произведенного воздействия уменьшается.

Необходимо отметить, что катализатор не смещает химическое равновесие, а только ускоряет его наступление.

Рассмотрим влияние каждого фактора на смещение химического равновесия для реакции общего вида:

аA + вB = сC + d D ± Q.

Влияние изменения концентрации. Согласно принципу Ле-Шателье, увеличение концентрации одного из компонентов равновесной химической реакции приводит к сдвигу равновесия в сторону усиления той реакции, при которой происходит химическая переработка этого компонента. И наоборот, уменьшение концентрации одного из компонентов приводит к сдвигу равновесия в сторону образования этого компонента.

Таким образом, увеличение концентрации вещества А или В смещает равновесие в прямом направлении; увеличение концентрации вещества С или D смещает равновесие в обратном направлении; уменьшение концентрации А или В смещает равновесие в обратном направлении; уменьшение концентрации вещества С или D смещает равновесие в прямом направлении. (Схематично можно записать: ­C А или C В ®; ­C С или C D ¬; ¯ C А или C В ¬; ¯ C С или C D ®).

Влияние температуры. Общее правило, определяющее влияние температуры на равновесие, имеет следующую формулировку: повышение температуры способствует сдвигу равновесия в сторону эндотермической реакции (- Q); понижение температуры способствует сдвигу равновесия в сторону экзотермической реакции (+ Q).

Реакции, протекающие без тепловых эффектов, не смещают химического равновесия при изменении температуры. Повышение температуры в этом случае приводит лишь к более быстрому установлению равновесия, которое было бы достигнуто в данной системе и без нагревания, но за более длительное время.

Таким образом, в экзотермической реакции (+ Q) увеличение температуры приводит к сдвигу равновесия в обратном направлении и, наоборот, в эндотермической реакции (- Q) увеличение температуры приводит к сдвигу в прямом направлении, а уменьшение температуры – в обратном направлении. (Схематично можно записать: при +Q ­Т ¬; ¯Т ®; при -Q ­Т ®; ¯Т ¬).

Влияние давления. Как показывает опыт, давление оказывает заметное влияние на смещение только тех равновесных реакций, в которых участвуют газообразные вещества, и при этом изменение числа молей газообразных участников реакции (Dn) не равно нулю. При увеличении давления равновесие смещается в сторону той реакции, которая сопровождается образованием меньшего количества молей газообразных веществ, а при понижении давления – в сторону образования большего количества молей газообразных веществ.

Таким образом, если Dn = 0, то давление не влияет на смещение химического равновесия; если Dn < 0, то увеличение давления смещает равновесие в прямом направлении, уменьшение давления в сторону обратной реакции; если Dn > 0, то увеличение давления смещает равновесие в обратном направлении, а уменьшение давления – в сторону прямой реакции. (Схематично можно записать: при Dn = 0 Р не влияет; при Dn <0 ­Р®, ¯Р¬; при Dn >0 ­Р ¬, ¯Р ®). Принцип Ле-Шателье применим как к гомогенным, так и к гетерогенным системам и дает качественную характеристику сдвига равновесия.

Химическое равновесие сохраняется до тех пор, пока остаются неизменными условия, в которых система находится. Изменение условий (концентрация веществ, температура, давление) вызывает нарушение равновесия. Через некоторое время химическое равновесие восстанавливается, но уже в новых, отличных от предыдущих условиях. Такой переход системы из одного равновесного состояния в другое называется смещением (сдвигом) равновесия. Направление смещения подчиняется принципу Ле Шателье.

При увеличении концентрации одного из исходных веществ равновесие смещается в сторону большего расхода этого вещества, усиливается прямая реакция. Уменьшение концентрации исходных веществ смещает равновесие в сторону образования этих веществ, так как усиливается обратная реакция. Повышение температуры смещает равновесие в сторону эндотермической реакции, при понижении температуры – в сторону экзотермической реакции. Увеличение давления смещает равновесие в сторону уменьшения количеств газообразных веществ, то есть в сторону меньших объемов, занимаемых этими газами. Напротив, при понижении давления равновесие смещается в сторону возрастания количеств газообразных веществ, то есть в сторону больших объемов, образуемых газами.

П р и м е р 1.

Как повлияет увеличение давления на равновесное состояние следующих обратимых газовых реакций:

а) SO 2 + C1 2 =SO 2 CI 2 ;

б) Н 2 + Вr 2 =2НВr.

Решение:

Используем принцип Ле Шателье, согласно которому повышение давления в первом случае (а) смещает равновесие вправо, в сторону меньшего количества газообразных веществ, занимающих меньший объем, что ослабляет внешнее воздействие возросшего давления. Во второй реакции (б) количество газообразных веществ, как исходных, так и продуктов реакции, равны, как равны и занимаемые ими объемы, поэтому давление не оказывает влияния и равновесие не нарушается.

П р и м е р 2.

В реакции синтеза аммиака (–Q) 3Н 2 + N 2 = 2NН 3 + Q прямая реакция экзотермическая, обратная – эндотермическая. Как следует изменить концентрацию реагирующих веществ, температуру и давление для увеличения выхода аммиака?

Решение:

Для смещения равновесия вправо необходимо:

а) увеличить концентрации Н 2 и N 2 ;

б) понизить концентрацию (удаление из сферы реакции) NH 3 ;

в) понизить температуру;

г) увеличить давление.

П р и м е р 3.

Гомогенная реакция взаимодействия хлороводорода и кислорода обратима:

4НС1 + O 2 = 2С1 2 + 2Н 2 O + 116 кДж.

1. Какое влияние на равновесие системы окажут:

а) увеличение давления;

б) повышение температуры;

в) введение катализатора?

Решение:

а) В соответствии с принципом Ле Шателье повышение давления приводит к смещению равновесия в сторону прямой реакции.

б) Повышение t° приводит к смещению равновесия в сторону обратной реакции.

в) Введение катализатора не смещает равновесия.

2. В каком направлении сместится химическое равновесие, если концентрацию реагирующих веществ увеличить в 2 раза?

Решение:

υ → = k → 0 2 0 2 ; υ 0 ← = k ← 0 2 0 2

После увеличения концентраций скорость прямой реакции стала:

υ → = k → 4 = 32 k → 0 4 0

то есть возросла по сравнению с начальной скоростью в 32 раза. Аналогичным образом скорость обратной реакции возрастает в 16 раз:

υ ← = k ← 2 2 = 16k ← [Н 2 O] 0 2 [С1 2 ] 0 2 .

Увеличение скорости прямой реакции в 2 раза превышает увеличение скорости обратной реакции: равновесие смещается вправо.

П р и м е р 4.

В какую сторону сместится равновесие гомогенной реакции:

PCl 5 = РС1 3 + Сl 2 + 92 КДж,

если повысить температуру на 30 °С, зная, что температурный коэффициент прямой реакции равен 2,5, а обратной – 3,2?

Решение:

Поскольку температурные коэффициенты прямой и обратной реакций не равны, повышение температуры по-разному скажется на изменении скоростей этих реакций. Пользуясь правилом Вант-Гоффа (1.3), находим скорости прямой и обратной реакций при повышении температуры на 30 °С:

υ → (t 2) = υ → (t 1)=υ → (t 1)2,5 0,1·30 = 15,6υ → (t 1);

υ ← (t 2) = υ ← (t 1) =υ → (t 1)3,2 0,1·30 = 32,8υ ← (t 1)

Повышение температуры увеличило скорость прямой реакции в 15,6 раза, обратной – в 32,8 раза. Следовательно, равновесие сместится влево, в сторону образования РСl 5 .

П р и м е р 5.

Как изменятся скорости прямой и обратной реакций в изолированной системе С 2 Н 4 + H 2 ⇄ С 2 Н 6 и куда сместится равновесие при увеличении объема системы в 3 раза?

Решение:

Начальные скорости прямой и обратной реакций следующие:

υ 0 = k 0 0 ; υ 0 = k 0 .

Увеличение объема системы вызывает уменьшение концентраций реагирующих веществ в 3 раза, отсюда изменение скорости прямой и обратной реакций будет следующим:

υ 0 = k = 1/9υ 0

υ = k = 1/3υ 0

Понижение скоростей прямой и обратной реакций неодинаково: скорость обратной реакции в 3 раза (1/3: 1/9 = 3) превышает скорость обратной реакции, поэтому равновесие сместится влево, в сторону, где система занимает больший объем, то есть в сторону образования С 2 Н 4 и Н 2 .

Основная статья: Принцип Ле Шателье - Брауна

Положение химического равновесия зависит от следующих параметров реакции: температуры, давления и концентрации. Влияние, которое оказывают эти факторы на химическую реакцию, подчиняются закономерности, которая была высказана в общем виде в 1885 году французским ученым Ле-Шателье.

Факторы, влияющие на химическое равновесие:

1) температура

При увеличении температуры химическое равновесие смещается в сторону эндотермической (поглощение) реакции, а при понижении в сторону экзотермической (выделение) реакции.

CaCO 3 =CaO+CO 2 -Q t →, t↓ ←

N 2 +3H 2 ↔2NH 3 +Q t ←, t↓ →

2) давление

При увеличении давления химическое равновесие смещается в сторону меньшего объёма веществ, а при понижении в сторону большего объёма. Этот принцип действует только на газы, т.е. если в реакции участвуют твердые вещества, то они в расчет не берутся.

CaCO 3 =CaO+CO 2 P ←, P↓ →

1моль=1моль+1моль

3) концентрация исходных веществ и продуктов реакции

При увеличении концентрации одного из исходных веществ химическое равновесие смещается в сторону продуктов реакции, а при повышении концентрации продуктов реакции-в сторону исходных веществ.

S 2 +2O 2 =2SO 2 [S],[O] →, ←

Катализаторы не влияют на смещение химического равновесия!


    Основные количественные характеристики химического равновесия: константа химического равновесия, степень превращения, степень диссоциации, равновесный выход. Поясните смысл этих величин на примере конкретных химических реакций.

В химической термодинамикезакон действующих масс связывает между собой равновесные активности исходных веществ и продуктов реакции, согласно соотношению:

Активностьвеществ. Вместо активности могут быть использованыконцентрация(для реакции в идеальном растворе),парциальные давления(реакция в смеси идеальных газов), фугитивность (реакция в смеси реальных газов);

Стехиометрический коэффициент(для исходных веществ принимается отрицательным, для продуктов - положительным);

Константа химического равновесия. Индекс «a» здесь означает использование величиныактивностив формуле.

Эффективность проведенной реакции оценивают обычно, рассчитывая выход продукта реакции (параграф 5.11). Вместе с тем, оценить эффективность реакции можно также, определив, какая часть наиболее важного (обычно наиболее дорогого) вещества превратилась в целевой продукт реакции, например, какая часть SO 2 превратилась в SO 3 при производстве серной кислоты, то есть найти степень превращения исходного вещества.

Пусть краткая схема протекающей реакции

Тогда степень превращения вещества А в вещество В ( А) определяется следующим уравнением

где n прореаг (А) – количество вещества реагента А, прореагировавшего с образованием продукта В, а n исходн (А) – исходное количество вещества реагента А.

Естественно, что степень превращения может быть выражена не только через количество вещества, но и через любые пропорциональные ему величины: число молекул (формульных единиц), массу, объем.

Если реагент А взят в недостатке и потерями продукта В можно пренебречь, то степень превращения реагента А обычно равна выходу продукта В

Исключение – реакции, в которых исходное вещество заведомо расходуется на образование нескольких продуктов. Так, например, в реакции

Cl 2 + 2KOH = KCl + KClO + H 2 O

хлор (реагент) в равной степени превращается в хлорид калия и гипохлорит калия. В этой реакции даже при 100 %-ном выходе KClO степень превращения в него хлора равна 50 %.

Известная вам величина – степень протолиза (параграф 12.4) – частный случай степени превращения:

В рамках ТЭД аналогичные величины называются степенью диссоциации кислоты или основания (обозначатся также, как степень протолиза). Степень диссоциации связана с константой диссоциации в соответствии с законом разбавления Оствальда.

В рамках той же теории равновесие гидролиза характеризуется степенью гидролиза (h ), при этом используются следующие выражения, связывающие ее с исходной концентрацией вещества (с ) и константами диссоциации образующихся при гидролизе слабых кислот (K HA) и слабых оснований (K MOH):

Первое выражение справедливо для гидролиза соли слабой кислоты, второе – соли слабого основания, а третье – соли слабой кислоты и слабого основания. Все эти выражения можно использовать только для разбавленных растворов при степени гидролиза не более 0,05 (5 %).

Обычно равновесный выход определяют по известной константе равновесия, с которой он связан в каждом конкретном случае определенным соотношением.

Выход продукта можно изменить, сместив равновесие реакции в обратимых процессах, воздействием таких факторов, как температура, давление, концентрация.

В соответствии с принципом Ле Шателье равновесная степень превращения увеличивается с повышением давления в ходе простых реакций, а др. случае объем реакционной смеси не меняется и выход продукта не зависит от давления.

Влияние температуры на равновесный выход, так же как и на константу равновесия, определяется знаком теплового эффекта реакции.

Для более полной оценки обратимых процессов используют так называемый выход от теоретического (выход от равновесного), равный отношению действительно полученного продукта со к количеству, которое получилось бы в состоянии равновесия.

ТЕРМИЧЕСКАЯ ДИССОЦИАЦИЯ химическая

реакция обратимого разложения вещества, вызываемая повышением темп-ры.

При Т. д. из одного вещества образуется несколько (2H2H+ ОСаО + СО) или одно более простое

Равновесие Т. д. устанавливается по действующих масс закону. Оно

может быть охарактеризовано или константой равновесия, или степенью диссоциации

(отношением числа распавшихся молекул к общему числу молекул). В

большинстве случаев Т. д. сопровождается поглощением теплоты (приращение

энтальпии

ДН>0); поэтому в соответствии с Ле Шателье -Брауна принципом

нагревание усиливает её, степень смещения Т. д. с температурой определяется

абсолютным значением ДН. Давление препятствует Т. д. тем сильнее, чем большим

изменением (возрастанием) числа молей (Ди) газообразных веществ

степень диссоциации от давления не зависит. Если твёрдые вещества не

образуют твёрдых растворов и не находятся в высокодисперсном состоянии,

то давление Т. д. однозначно определяется темп-рой. Для осуществления Т.

д. твёрдых веществ (окислов, кристаллогидратов и пр.)

важно знать

темп-ру, при к-рой давление диссоциации становится равным внешнему (в частности,

атмосферному) давлению. Так как выделяющийся газ может преодолеть

давление окружающей среды, то по достижении этой темп-ры процесс разложения

сразу усиливается.

Зависимость степени диссоциации от температуры : степень диссоциации возрастает при повышении температуры (повышение температуры приводит к увеличению кинетической энергии растворённых частиц, что способствует распаду молекул на ионы)

    Степень превращения исходных веществ и равновесный выход продукта. Способы их расчета при заданной температуре. Какие данные необходимы для этого? Дайте схему расчета любой из этих количественных характеристик химического равновесия на произвольном примере.

Степень превращения – количество прореагировавшего реагента, отнесенное к его исходному количеству. Для простейшей реакции , где - концентрация на входе в реактор или в начале периодического процесса, - концентрация на выходе из реактора или текущий момент периодического процесса. Для произвольной реакции, например, , в соответствии с определением расчетная формула такая же: . Если в реакции несколько реагентов, то степень превращения можно считать по каждому из них, например, для реакции Зависимость степени превращения от времени реакции определяется изменением концентрации реагента от времени. В начальный момент времени, когда ничего не превратилось, степень превращения равна нулю. Затем, по мере превращения реагента, степень превращения растет. Для необратимой реакции, когда ничто не мешает реагенту израсходоваться полностью, ее значение стремится (рис.1) к единице (100%). Рис.1 Чем больше скорость расходования реагента, определяемая значением константы скорости, тем быстрее растет степень превращения, что представлено на рисунке. Если реакция обратимая , то при стремлении реакции к равновесию степень превращения стремится к равновесному значению, величина которого зависит от соотношения констант скоростей прямой и обратной реакции (от константы равновесия) (рис.2). Рис.2 Выход целевого продукта Выход продукта – количество реально полученного целевого продукта, отнесенное к количеству этого продукта, которое получилось бы, если бы весь реагент перешел в этот продукт (к максимально возможному количеству получившегося продукта). Или (через реагент): количество реагента, реально перешедшего в целевой продукт, отнесенное к исходному количеству реагента. Для простейшей реакции выход , а имея в виду, что для этой реакции , , т.е. для простейшей реакции выход и степень превращения – это одна и та же величина. Если превращение проходит с изменением количества веществ, например, , то в соответствии с определением стехиометрический коэффициент должен войти в расчетное выражение. В соответствии с первым определением воображаемое количество продукта, получившегося из всего исходного количества реагента, будет для этой реакции в два раза меньше, чем исходное количество реагента, т.е. , и расчетная формула . В соответствии со вторым определением количество реагента, реально перешедшее в целевой продукт будет в два раза больше, чем образовалось этого продукта, т.е. , тогда расчетная формула . Естественно, что оба выражения одинаковы. Для более сложной реакции расчетные формулы записываются точно так же в соответствии с определением, но в этом случае выход уже не равен степени превращения. Например, для реакции , . Если в реакции несколько реагентов, выход может быть рассчитан по каждому из них, если к тому же несколько целевых продуктов, то выход можно считать на любой целевой продукт по любому реагенту. Как видно из структуры расчетной формулы (в знаменателе находится постоянная величина), зависимость выхода от времени реакции определяется зависимостью от времени концентрации целевого продукта. Так, например, для реакции эта зависимость выглядит как на рис.3. Рис.3

    Степень превращения как количественная характеристика химического равновесия. Как повлияют повышение общего давления и температуры на степень превращения реагента … в газофазной реакции: (дано уравнение )? Приведите обоснование ответа и соответствующие математические выражения.

Состояние равновесия для обратимой реакции может длиться неограниченно долгое время (без вмешательства извне). Но если на такую систему оказать внешнее воздействие (изменить температуру, давление или концентрацию конечных либо исходных веществ), то состояние равновесия нарушится. Скорость одной из реакций станет больше по сравнению со скоростью другой. С течением времени система вновь займет равновесное состояние, но новые равновесные концентрации исходных и конечных веществ будут отличаться от первоначальных. В этом случае говорят о смещении химического равновесия в ту или иную сторону.

Если в результате внешнего воздействия скорость прямой реакции становится больше скорости обратной реакции, то это значит, что химическое равновесие сместилось вправо. Если же, наоборот, становится больше скорость обратной реакции, это значит, что химическое равновесие сместилось влево.

При смещении равновесия вправо происходит уменьшение равновесных концентрацийисходных веществ и увеличениеравновесных концентраций конечных веществ по сравнению с первоначальными равновесными концентрациями. Соответственно, при этом возрастает и выход продуктов реакции.

Смещение химического равновесия влево вызывает возрастание равновесных концентраций исходных веществ и уменьшение равновесных концентраций конечных продуктов, выход которых при этом уменьшится.

Направление смещения химического равновесия определяется с помощью принципа Ле-Шателье: «Если на систему, находящуюся в состоянии химического равновесия, оказать внешнее воздействие (изменить температуру, давление, концентрацию одного или нескольких веществ, участвующих в реакции), то это приведет к увеличению скорости той реакции, протекание которой будет компенсировать (уменьшать) оказанное воздействие» .

Например, при увеличении концентрации исходных веществ возрастает скорость прямой реакции и равновесие смещается вправо. При уменьшении концентрации исходных веществ, наоборот, возрастает скорость обратной реакции, а химическое равновесие смещается влево.

При увеличении температуры (т.е. при нагревании системы) равновесие смещается в сторону протекания эндотермической реакции, а при ее уменьшении (т.е. при охлаждении системы) – в сторону протекания экзотермической реакции. (Если прямая реакция является экзотермической, то обратная обязательно будет эндотермической, инаоборот).

Следует подчеркнуть, что увеличение температуры, как правило, увеличивает скорость и прямой, и обратной реакции, но при этом скорость эндотермической реакции возрастает в большей степени, чем скорость экзотермической реакции. Соответственно, при охлаждениисистемы скорости прямой и обратной реакций уменьшаются, но тоже не в одинаковой степени: для экзотермической реакции существенно меньше, чем для эндотермической.

Изменение давления влияет на смещение химического равновесия только при выполнении двух условий:

    необходимо, чтобы хоть одно из веществ, участвующих в реакции, находилось в газообразном состоянии, например:

СаСО 3(т) СаО (т) + СО 2(г) - изменение давления влияет насмещение равновесия.

СН 3 СООН (ж.) + С 2 Н 5 ОН (ж.) СН 3 СООС 2 Н 5(ж.) + Н 2 О (ж.) – изменениедавления не влияет на смещение химического равновесия, т.к. ни одно из исходных или конечных веществ не находится в газообразном состоянии;

    если в газообразном состоянии находятся несколько веществ, необходимо, чтобы число молекул газа в левой части уравнения такой реакции не было равно числу молекулгаза в правой части уравнения, например:

2SO 2(г) +O 2(г) 2SO 3(г) – изменение давления влияет на смещение равновесия

I 2(г) + Н 2(г) 2НI (г) – изменение давления не влияет на смещение равновесия

При выполнении этих двух условий увеличение давления приводит к смещению равновесия в сторону реакции, протекание которой уменьшает число молекул газа в системе. В нашем примере (каталитическое горение SO 2) это будет прямая реакция.

Уменьшение давления, наоборот, смещает равновесие в сторону реакции, идущей с образованием большего числа молекул газа. В нашем примере это будет обратная реакция.

Увеличение давления вызывает уменьшение объема системы, а значит, и увеличение молярных концентраций газообразных веществ. В результате скорость прямой и обратной реакций увеличивается, но не в одинаковой степени. Понижение же давления по аналогичной схеме приводит к уменьшению скоростей прямой и обратной реакций. Но при этом скорость реакции, в сторону которой смещается равновесие, уменьшается в меньшей степени.

Катализатор не влияет на смещение равновесия, т.к. он в одинаковой степени ускоряет (или замедляет) как прямую, так и обратную реакцию. В его присутствии химическое равновесие только быстрее (или медленнее) устанавливается.

Если на систему оказывают воздействие сразу несколько факторов одновременно, то каждый из них действует независимо от других. Например, при синтезе аммиака

N 2(газ) + 3H 2(газ) 2NH 3(газ)

реакцию осуществляют при нагревании и в присутствии катализатора для увеличения ее скорости.Но при этом воздействие температуры приводит к тому, что равновесие реакции смещается влево, в сторону обратной эндотермической реакции. Это вызываетуменьшение выхода NH 3 . Чтобы компенсировать данноенежелательное действие температуры и увеличитьвыход аммиака, одновременно в системе повышают давление,которое смещает равновесие реакции вправо, т.е. в сторону образования меньшего числа молекул газа.

При этом опытным путем подбирают наиболее оптимальные условия осуществленияреакции (температуру, давление), при которых она протекала бы с достаточно большой скоростью и давала экономическирентабельный выход конечного продукта.

Принцип Ле-Шателье аналогичным образом используется в химической промышленности при производстве большого числа различных веществ, имеющих огромное значение для народного хозяйства.

Принцип Ле-Шательеприменим не только к обратимым химическим реакциям, но и к различным другим равновесным процессам: физическим, физико-химическим, биологическим.

Организм взрослого человека характеризуется относительным постоянством многих параметров, в том числе различных биохимических показателей, включающих в себя концентрации биологически активных веществ. Однако такое состояние нельзя назвать равновесным, т.к. оно не приложимо к открытым системам.

Организм человека, как любая живая система, постоянно обменивается с окружающей средой различными веществами: потребляет продукты питания и выделяет продукты их окисления и распада. Следовательно, для организма характерно стационарное состояние , определяемое как постоянство его параметров при постоянной скорости обмена с окружающей средой веществом и энергией. В первом приближении стационарное состояние можно рассматривать как ряд равновесных состояний, связанных между собой процессами релаксации. В состоянии равновесия концентрации веществ, участвующих в реакции, поддерживаются за счёт восполнения извне исходных и удаления наружу конечных продуктов. Изменение их содержания в организме не приводит, в отличие от закрытых систем, к новому термодинамическому равновесию. Система возвращается в первоначальное состояние. Таким образом, поддерживается относительное динамическое постоянство состава и свойств внутренней среды организма, обусловливающее устойчивость его физиологических функций. Данное свойство живой системы называется иначегомеостазом .

В ходе жизнедеятельности организма, находящегося в стационарном состоянии, в отличие от закрытой равновесной системы, происходит увеличение энтропии. Однако, наряду с этим, одновременно протекает и обратный процесс – уменьшение энтропии за счёт потребления из окружающей среды питательных веществ с низким значением энтропии (например, высокомолекулярных соединений – белков, полисахаридов, углеводов и др.) и выделения в среду продуктов распада. Согласно положению И.Р.Пригожина, суммарное производство энтропии для организма, находящегося в стационарном состоянии, стремится к минимуму.

Большой вклад в развитие неравновесной термодинамики внес И. Р. Пригожий , лауреат Нобелевской премии 1977 г., который утверждал, что «в любой неравновесной системе существуют локальные участки, находящиеся в равновесном состоянии. В классической термодинамике равновесие относится ко всей системе, а в неравновесной - только к ее отдельным частям».

Установлено, что энтропия в таких системах возрастает в период эмбриогенеза, при процессах регенерации и росте злокачественных новообразований.

Химическое равновесие присуще обратимым реакциям и не характерно для необратимых химических реакций.

Часто, при осуществлении химического процесса, исходные реагирующие вещества полностью переходят в продукты реакции. Например:

Cu + 4HNO 3 = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

Невозможно получить металлическую медь, проводя реакцию в обратном направлении, т.к. данная реакция необратима . В таких процессах реагенты полностью переходят в продукты, т.е. реакция протекает до конца.

Но основная часть химических реакций обратима , т.е. вероятно параллельное протекание реакции в прямом и обратном направлениях. Иначе говоря, реагенты лишь частично переходят в продукты и реакционная система будет состоять как из реагентов, так и из продуктов. Система в данном случае находится в состоянии химического равновесия.

При обратимых процессах, вначале прямая реакция имеет максимальную скорость, которая постепенно снижается, в связи с уменьшением количества реагентов. Обратная реакция, наоборот, вначале имеет минимальную скорость, которая увеличивается по мере накапливания продуктов. В конце концов, наступает момент, когда скорости обоих реакций становятся равными – система приходит в состояние равновесия. При наступлении состояния равновесия, концентрации компонентов остаются неизменными, но химическая реакция при этом не прекращается. Т.о. – это динамичное (подвижное) состояние. Для наглядности, приведем следующий рисунок:

Допустим, протекает некая обратимая химическая реакция :

а А + b В = с С + d D

тогда, исходя из закона действующих масс, запишем выражения для прямой υ 1 и обратной υ 2 реакций:

υ1 = k 1 ·[A] a ·[B] b

υ2 = k 2 ·[C] c ·[D] d

В состоянии химического равновесия , скорости прямой и обратной реакции равны, т.е.:

k 1 ·[A] a ·[B] b = k 2 ·[C] c ·[D] d

получаем

К = k 1 / k 2 = [C] c ·[D] d ̸ [A] a ·[B] b

Где К = k 1 / k 2 константа равновесия.

Для любого обратимого процесса, при заданных условиях k является величиной постоянной. Она не зависит от концентраций веществ, т.к. при изменении количества одного из веществ, количества других компонентов также меняются.

При изменении условий протекания химического процесса, возможно смещение равновесия.

Факторы, влияющие на смещение равновесия:

  • изменение концентраций реагентов или продуктов,
  • изменение давления,
  • изменение температуры,
  • внесение катализатора в реакционную среду.

Принцип Ле-Шателье

Все вышеперечисленные факторы влияют на смещение химического равновесия, которое подчиняется принципу Ле-Шателье : если изменить одно из условий, при котором система находится в состоянии равновесия – концентрацию, давление или температуру, — то равновесие сместится в направлении той реакции, которая противодействует этому изменению. Т.е. равновесие стремится к смещению в направлении, приводящему к уменьшению влияния воздействия, которое привело к нарушению состояния равновесия.

Итак, рассмотрим отдельно влияние каждого их факторов на состояние равновесия.

Влияние изменения концентраций реагентов или продуктов покажем на примере процесса Габера :

N 2(г) + 3H 2(г) = 2NH 3(г)

Если в равновесную систему, состоящую из N 2(г) , H 2(г) и NH 3(г) , добавить, например, азот, то равновесие должно сместиться в направлении, которое способствовало бы уменьшению количества водорода в сторону его исходного значения, т.е. в направлении образования дополнительного количества аммиака (вправо). При этом одновременно произойдет и уменьшение количества водорода. При добавлении в систему водорода, также произойдет смещение равновесия в сторону образования нового количества аммиака (вправо). Тогда как внесение в равновесную систему аммиака, согласно принципу Ле-Шателье , вызовет смещение равновесия в сторону того процесса, который благоприятен для образования исходных веществ (влево), т.е. концентрация аммиака должна уменьшится посредством разложения некоторого его количества на азот и водород.

Уменьшение концентрации одного из компонентов, сместит равновесное состояние системы в сторону образования этого компонента.

Влияние изменения давления имеет смысл, если в исследуемом процессе принимают участие газообразные компоненты и при этом имеет место изменение общего числа молекул. Если общее число молекул в системе остается постоянным , то изменение давления не влияет на ее равновесие, например:

I 2(г) + H 2(г) = 2HI (г)

Если полное давление равновесной системы увеличивать посредством уменьшения ее объема, то равновесие сместится в сторону уменьшения объема. Т.е. в сторону уменьшения числа газа в системе. В реакции:

N 2(г) + 3H 2(г) = 2NH 3(г)

из 4 молеул газа (1 N 2(г) и 3 H 2(г)) образуется 2 молекулы газа (2 NH 3(г)), т.е. давление в системе уменьшается. Вследствие чего, рост давления будет способствовать образованию дополнительного количества аммиака, т.е. равновесие сместится в сторону его образования (вправо).

Если температура системы постоянна, то изменение полного давления системы не приведет к изменению константы равновесия К.

Изменение температуры системы влияет не только на смещение ее равновесия, но также и на константу равновесия К. Если равновесной системе, при постоянном давлении, сообщать дополнительную теплоту, то равновесие сместится в сторону поглощения теплоты. Рассмотрим :

N 2(г) + 3H 2(г) = 2NH 3(г) + 22 ккал

Итак, как видно, прямая реакция протекает с выделением теплоты, а обратная – с поглощением. При увеличении температуры, равновесие этой реакции смещается в сторону реакции разложения аммиака (влево), т.к. она является и ослабляет внешнее воздействие – повышение температуры. Напротив, охлаждение приводит к смещению равновесия в направлении синтеза аммиака (вправо), т.к. реакция является экзотермической и противодействует охлаждению.

Таким образом, рост температуры благоприятствует смещению химического равновесия в сторону эндотермической реакции, а падение температуры – в направлении экзотермического процесса. Константы равновесия всех экзотермических процессов при росте температуры уменьшаются, а эндотермических процессов – увеличиваются.