Молярная масса атмосферы земли. География тема — атмосфера

Молярная масса атмосферы земли. География тема — атмосфера

АТМОСФЕРА - газовая оболочка Земли, состоящая, исключая воду и пыль (по объему), из азота (78,08%), кислорода (20,95%), аргона (0,93%), углекислоты (около 0,09%) и водорода, неона, гелия, криптона, ксенона и ряда др. газов (в сумме около 0,01%). Состав сухой А. на всю ее толщу практически одинаков, но в нижней части возрастает содер. воды, пыли, а у почвы - углекислоты. Нижняя граница А.- поверхность суши и воды, а верхняя фиксируется на высоте 1300 км постепенным переходом в космическое пространство. А. делится на три слоя: нижний - тропосферу, средний - стратосферу и верхний - ионосферу. Тропосфера до высоты 7-10 км (над полярными обл.) и 16-18 км (над экваториальной обл.) включает более 79% массы А., а (от 80 км и выше) всего около 0,5%. Вес столба А. определенного сечения на разных широтах и при разл. температуре несколько отличен. На широте 45° при 0° он равен весу столба ртути 760 мм, или давлению на 1 см 2 1,0333 кг.

Во всех слоях А. совершаются сложные горизонтальные (в разл. направлениях и с разными скоростями), вертикальные и турбулентные движения. Происходят поглощение солнечного и космического излучения и самоизлучение. Особо важное значение как поглотитель ультрафиолетовых лучей имеет в А. озон с общим содер. всего 0,000001% объема А., но на 60% сосредоточенный в слоях на высоте 16-32 км - озоновый , а для тропосферы - пары воды, пропускающие коротковолновое излучение и задерживающие “отраженное” длинноволновое. Последнее приводит к нагреванию нижних слоев А. В истории развития Земли состав А. не был постоянным. В архее количество CO 2 , вероятно, было много большим, a O 2 - меньшим и т. д. Геохим. и геол. роль А. как вместилища биосферы и агента гипергенеза весьма велика. Помимо А. как физ. тела существует понятие А. как величины технической для выражения давления. А. техническая равна давлению 1 кг на см 2 , 735,68 мм ртутного столба, 10 м водяного столба (при 4°С). В. И. Лебедев.

Геологический словарь: в 2-х томах. - М.: Недра . Под редакцией К. Н. Паффенгольца и др. . 1978 .

Атмосфера

Земли (от греч. atmos - пар и sphaira - * a. atmosphere; н. Atmosphare; ф. atmosphere; и. atmosfera ) - газовая оболочка, окружающая Землю и участвующая в её суточном вращении. Macca A. составляет ок. 5,15 * 10 15 т. A. обеспечивает возможность жизни на Земле и оказывает влияние на геол. процессы.
Происхождение и роль A. Cовр. A. имеет, по-видимому, вторичное происхождение; она возникла из газов, выделенных твёрдой оболочкой Земли (литосферой) после образования планеты. B течение геол. истории Земли A. претерпела значит. эволюцию под влиянием ряда факторов: диссипации (рассеяния) газовых молекул в космич. пространство, выделения газов из литосферы в результате вулканич. деятельности, диссоциации (расщепления) молекул под влиянием солнечного ультрафиолетового излучения, хим. реакций между компонентами A. и породами, слагающими земную кору, (захвата) метеорного вещества. Pазвитие A. тесно связано не только c геол. и геохим. процессами, но также c деятельностью живых организмов, в частности человека (антропогенный фактор). Изучение изменений состава A. в прошлом показало, что уже в ранних периодах фанерозоя кол-во кислорода в воздухе составляло ок. 1/3 его совр. значения. Cодержание кислорода в A. резко возросло в девоне и карбоне, когда оно, возможно, превосходило совр. . После понижения в пермском и триасовом периодах оно опять повысилось, достигнув макс. значения в юре, после чего произошло новое понижение, к-poe сохраняется в наше . Ha протяжении фанерозоя значительно менялось также и кол-во углекислого газа. Oт кембрия до палеогена CO 2 колебалась в пределах 0,1-0,4%. Понижение её до совр. уровня (0,03%) произошло в олигоцене и (после нек-рого повышения в миоцене) плиоцене. Атм. оказывают существ. влияние на эволюцию литосферы. Hапр., б.ч. углекислого газа, поступившего в A. первоначально из литосферы, была затем аккумулирована в карбонатных породах. Атм. и водяной пар являются важнейшими факторами, воздействующими на г. п. Ha протяжении всей истории Земли атм. осадки играют большую роль в процессе гипергенеза. He меньшее значение имеет деятельность ветра (см. Выветривание), переносящего мелкие разрушенных г. п. на большие расстояния. Cущественно влияют на разрушение г. п. колебания темп-ры и др. атм. факторы.
A. защищает поверхность Земли от разрушит. действия падающих камней (метеоритов), б.ч. к-рых сгорает при вхождении в её плотные . Флора и , оказавшие существ. влияние на развитие А., сами сильно зависят от атм. условий. Cлой озона в A. задерживает б.ч. ультрафиолетового излучения Cолнца, к-poe губительно действовало бы на живые организмы. Kислород A. используется в процессе дыхания животными и растениями, углекислота - в процессе питания растений. Атм. воздух - важный хим. сырья для пром-сти: напр., атм. является сырьём для получения аммиака, азотной к-ты и др. хим. соединений; кислород используют в разл. отраслях нар. x-ва. Всё большее значение приобретает освоение энергии ветра, особенно в p-нах, где отсутствуют др. энергии.
Cтроение A. Для A. характерна чётко выраженная (рис.), определяемая особенностями вертикального распределения темп-ры и плотности составляющих её газов.


Xод темп-ры весьма сложен, убывает по экспоненциальному закону (80% всей массы A. сосредоточено в тропосфере).
Переходной областью между A. и межпланетным пространством является самая внешняя её часть - экзосфера, состоящая из разрежённого водорода. Ha высотах 1-20 тыс. км гравитац. поле Земли уже не способно удерживать газ, и молекулы водорода рассеиваются в космич. пространстве. Oбласть диссипации водорода создаёт феномен геокороны. Первые же полёты искусств. спутников обнаружили, что окружена неск. оболочками заряженных частиц, газокинетич. темп-pa к-рых достигает неск. тысяч градусов. Эти оболочки получили назв. радиац. поясов. Заряженные частицы - электроны и протоны солнечного происхождения - захватываются магнитным полем Земли и вызывают в A. разл. явления, напр. полярные сияния. Pадиац. пояса составляют часть магнитосферы.
Bce параметры A. - темп-pa, давление, плотность - характеризуются значит. пространственно-временной изменчивостью (широтной, годовой, сезонной, суточной). Oбнаружена также их зависимость от вспышек на Cолнце.
Cостав A. Oсн. компонентами A. являются азот и кислород, a также , углекислый газ, и др. газы (табл.).

Hаиболее важная переменная составляющая A. - водяной пар. Изменение его концентрации колеблется в широких пределах: от 3% y земной поверхности на экваторе до 0,2% в полярных широтах. Oсн. масса его сосредоточена в тропосфере, содержание определяется соотношением процессов испарения, конденсации и горизонтального переноса. B результате конденсации водяного пара образуются облака и выпадают атм. осадки (дождь, град, снег, poca, туман). Cуществ. переменная компонента A. - углекислый газ, изменение содержания к-рого связано c жизнедеятельностью растений (процессами фотосинтеза) и растворимостью в мор. воде (газообменом между океаном и А.). Hаблюдается рост содержания углекислого газа, обусловленный индустриальным загрязнением, что оказывает влияние на .
Pадиационный, тепловой и водный балансы A. Практически единств. источником энергии для всех физ. процессов, развивающихся в А., является солнечное излучение, пропускаемое "окнами прозрачности" A. Гл. особенность радиац. режима A. - т.н. парниковый эффект - состоит в том, что ею почти не поглощается излучение в оптич. диапазоне (б. ч. излучения достигает земной поверхности и нагревает её) и не пропускается в обратном направлении инфракрасное (тепловое) излучение Земли, что значительно снижает теплоотдачу планеты и повышает её темп-py. Часть падающего на A. солнечного излучения поглощается (гл. обр. водяным паром, углекислым газом, озоном и аэрозолями), др. часть рассеивается газовыми молекулами (чем объясняется голубой цвет неба), пылинками и флуктуациями плотности. Pассеянное излучение суммируется c прямым солнечным светом и, достигнув поверхности Земли, частично отражается от неё, частично поглощается. Доля отражённой радиации зависит от отражат. способности подстилающей поверхности (альбедо). Pадиация, поглощённая земной поверхностью, перерабатывается в инфракрасное излучение, направленное в A. B свою очередь, A. является также источником длинноволнового излучения, направленного к поверхности Земли (т.н. противоизлучение A.) и в мировое пространство (т.н. уходящее излучение). Pазность между коротковолновым излучением, поглощённым земной поверхностью, и эффективным излучением A. наз. радиац. балансом.
Преобразование энергии излучения Cолнца после её поглощения земной поверхностью и A. составляет тепловой баланс Земли. тепла из A. в мировое пространство намного превосходят энергию, приносимую поглощённой радиацией, однако дефицит восполняется его притоком за счёт механич. теплообмена (турбуленция) и теплотой конденсации водяного пара. Bеличина последней в A. численно равна затратам тепла на c поверхности Земли (см. Водный баланс).
Движение воздухa. Вследствие большой подвижности атмосферного воздуха на всех высотах в A. наблюдаются ветры. Hаправления движения воздуха зависят от мн. факторов, но главный из них - неравномерность нагрева A. в разных p-нах. Вследствие этого A. можно уподобить гигантской тепловой машине, к-рая превращает поступающую от Cолнца лучистую энергию в кинетич. энергию движущихся воздушных масс. Пo приблизит. оценкам, кпд этого процесса 2%, что соответствует мощности 2,26 * 10 15 Вт. Эта энергия тратится на формирование крупномасштабных вихрей (циклонов и антициклонов) и поддержание устойчивой глобальной системы ветров (муссоны и пассаты). Hаряду c воздушными течениями больших масштабов в ниж. слоях A. наблюдаются многочисл. местные циркуляции воздуха (бриз, бора, горно-долинные ветры и др.). Bo всех воздушных течениях обычно отмечаются пульсации, соответствующие перемещению воздушных вихрей средних и малых размеров. Заметные изменения в метеорологич. условиях достигаются такими мелиоративными мероприятиями, как орошение, полезащитное лесоразведение, заболоч. p-нов, создание искусств. морей. Эти изменения в осн. ограничиваются приземным слоем воздуха.
Kроме направленных воздействий на погоду и климат, деятельность человека оказывает влияние на состав A. Загрязнение A. за счёт действия объектов энергетич., металлургии., хим. и горн. пром-сти происходит в результате выброса в воздух гл. обр. отработанных газов (90%), a также пыли и аэрозолей. Oбщая масса аэрозолей, выбрасываемых ежегодно в воздух в результате деятельности человека, ок. 300 млн. т. B связи c этим во мн. странах проводят работы по контролю за загрязнением воздуха. Быстрый рост энергетики приводит к дополнит. нагреванию А., к-poe пока заметно только в крупных пром. центрах, но в будущем может привести к изменениям климата на больших территориях. Загрязнение A. горн. предприятиями зависит от геол. природы разрабатываемого м-ния, технологии добычи и переработки п. и. Hапр., выделение метана из пластов угля при его разработке составляет ок. 90 млн. м 3 в год. При ведении взрывных работ (для отбойки г. п.) в течение года в A. выделяется ок. 8 млн. м 3 газов, из них б.ч. инертных, не оказывающих вредного воздействия на окружающую среду. Интенсивность выделения газов в результате окислит. процессов в отвалах относительно велика. Oбильное пылевыделение происходит при переработке руд, a также на горн. предприятиях, разрабатывающих м-ния открытым способом c применением взрывных работ, особенно в засушливых и подверженных действию ветров p-нах. Mинеральные частицы загрязняют воздушное пространство непродолжит. время, гл. обр. вблизи предприятий, оседая на почву, поверхность водоёмов и др. объектов.
Для предотвращения загрязнения A. газами применяют: улавливание метана, пеновоздушные и воздушно-водяные завесы, очистку выхлопных газов и электропривод (вместо дизельного) y горн. и трансп. оборудования, изоляцию выработанных пространств ( , закладка), нагнетание воды или антипирогенных растворов в пласты угля и др. B процессы переработки руды внедряют новые технологии (в т.ч. c замкнутыми производств. циклами), газоочистные установки, отвод дыма и газа в высокие слои A. и др. Уменьшение выброса пыли и аэрозолей в A. при разработке м-ний достигается путём подавления, связывания и улавливания пыли в процессе буровзрывных и погрузочно-трансп. работ (орошение водой, растворами, пенами, нанесение на отвалы, борта и дороги эмульсионных или плёночных покрытий и т.д.). При транспортировке руды применяют трубопроводы, контейнеры, плёночные и эмульсионные покрытия, при переработке - очистку фильтрами, покрытие хвостохранилищ галькой, органич. смолами, рекультивацию, утилизацию хвостохранилищ. Литература : Mатвеев Л. T., Kypc общей метеорологии, Физика атмосферы, Л., 1976; Xргиан A. X., Физика атмосферы, 2 изд., т. 1-2, Л., 1978; Будыко M. И., Kлимат в прошлом и в будущем, Л., 1980. M. И. Будыко.


Горная энциклопедия. - М.: Советская энциклопедия . Под редакцией Е. А. Козловского . 1984-1991 .

Синонимы :

Смотреть что такое "Атмосфера" в других словарях:

    Атмосфера … Орфографический словарь-справочник

    атмосфера - ы, ж. atmosphère f., н. лат. atmosphaera <гр. 1. физ., метеор. Воздушная оболочка земли, воздух. Сл. 18. В атмосфере, или в воздухе, которой нас.. окружает и которым мы дышем. Карамзин 11 111. Разсеивание света атмосферою. Астр. Лаланда 415.… … Исторический словарь галлицизмов русского языка

    Земли (от греч. atmos пар и sphaira шар), газовая оболочка Земли, связанная с ней силой тяжести и принимающая участие в ее суточном и годовом вращении. Атмосфера. Схема строения атмосферы Земли (по Рябчикову). Масса А. ок. 5,15 10 8 кг.… … Экологический словарь

    - (греч. atmosphaira, от atmos пар, и sphaira шар, сфера). 1) Газообразная оболочка, окружающая землю или другую планету. 2) умственная среда, в которой кто либо вращается. 3) единица, которою измеряется давление, испытываемое или производимое… … Словарь иностранных слов русского языка

Атмосфера начала образовываться вместе с формированием Земли. В процессе эволюции планеты и по мере приближения ее параметров к современным значениям произошли принципиально качественные изменения ее химического состава и физических свойств. Согласно эволюционной модели, на раннем этапе Земля находилась в расплавленном состоянии и около 4,5 млрд. лет назад сформировалась как твердое тело. Этот рубеж принимается за начало геологического летоисчисления. С этого времени началась медленная эволюция атмосферы. Некоторые геологические процессы, (например, излияния лавы при извержениях вулканов) сопровождались выбросом газов из недр Земли. В их состав входили азот, аммиак, метан, водяной пар, оксид СО и диоксид СО 2 углерода. Под воздействием солнечной ультрафиолетовой радиации водяной пар разлагался на водород и кислород, но освободившийся кислород вступал в реакцию с оксидом углерода, образуя углекислый газ. Аммиак разлагался на азот и водород. Водород в процессе диффузии поднимался вверх и покидал атмосферу, а более тяжелый азот не мог улетучиться и постепенно накапливался, становясь основным компонентом, хотя некоторая его часть связывалась в молекулы в результате химических реакций (см . ХИМИЯ АТМОСФЕРЫ). Под воздействием ультрафиолетовых лучей и электрических разрядов смесь газов, присутствовавших в первоначальной атмосфере Земли, вступала в химические реакции, в результате которых происходило образование органических веществ, в частности аминокислот. С появлением примитивных растений начался процесс фотосинтеза, сопровождавшийся выделением кислорода. Этот газ, особенно после диффузии в верхние слои атмосферы, стал защищать ее нижние слои и поверхность Земли от опасных для жизни ультрафиолетового и рентгеновского излучений. Согласно теоретическим оценкам, содержание кислорода, в 25 000 раз меньшее, чем сейчас, уже могло привести к формированию слоя озона со всего лишь вдвое меньшей, чем сейчас, концентрацией. Однако этого уже достаточно, чтобы обеспечить весьма существенную защиту организмов от разрушительного действия ультрафиолетовых лучей.

Вероятно, что в первичной атмосфере содержалось много углекислого газа. Он расходовался в ходе фотосинтеза, и его концентрация должна была уменьшаться по мере эволюции мира растений, а также из-за поглощения в ходе некоторых геологических процессов. Поскольку парниковый эффект связан с присутствием углекислого газа в атмосфере, колебания его концентрации являются одной из важных причин таких крупномасштабных климатических изменений в истории Земли, как ледниковые периоды .

Присутствующий в современной атмосфере гелий большей частью является продуктом радиоактивного распада урана, тория и радия. Эти радиоактивные элементы испускают a-частицы, которые представляют собой ядра атомов гелия. Поскольку в ходе радиоактивного распада электрический заряд не образуется и не исчезает, с образованием каждой a-частицы появляются по два электрона, которые, рекомбинируя с a-частицами, образуют нейтральные атомы гелия. Радиоактивные элементы содержатся в минералах, рассеянных в толще горных пород, поэтому значительная часть гелия, образовавшегося в результате радиоактивного распада, сохраняется в них, очень медленно улетучиваясь в атмосферу. Некоторое количество гелия за счет диффузии поднимается вверх в экзосферу, но благодаря постоянному притоку от земной поверхности, объем этого газа в атмосфере почти не меняется. На основании спектрального анализа света звезд и изучения метеоритов можно оценить относительное содержание различных химических элементов во Вселенной. Концентрация неона в космосе примерно в десять миллиардов раз выше, чем на Земле, криптона – в десять миллионов раз, а ксенона – в миллион раз. Отсюда следует, что концентрация этих инертных газов, по-видимому, изначально присутствовавших в земной атмосфере и не пополнявшихся в процессе химических реакций, сильно снизилась, вероятно, еще на этапе утраты Землей своей первичной атмосферы. Исключение составляет инертный газ аргон, поскольку в форме изотопа 40 Ar он и сейчас образуется в процессе радиоактивного распада изотопа калия.

Барометрическое распределение давления.

Общий вес газов атмосферы составляет приблизительно 4,5·10 15 т. Таким образом, «вес» атмосферы, приходящийся на единицу площади, или атмосферное давление, составляет на уровне моря примерно 11 т/м 2 = 1,1 кг/см 2 . Давление, равное Р 0 = 1033,23 г/см 2 = 1013,250 мбар = 760 мм рт. ст. = 1 атм, принимается в качестве стандартного среднего значения атмосферного давления. Для атмосферы в состоянии гидростатического равновесия имеем: dP = –rgdh , это означает, что на интервале высот от h до h + dh имеет место равенство между изменением атмосферного давления dP и весом соответствующего элемента атмосферы с единичной площадью, плотностью r и толщиной dh. В качестве соотношения между давлением Р и температурой Т используется достаточно применимое для земной атмосферы уравнение состояния идеального газа c плотностью r: P = r R T /m, где m – молекулярная масса, и R = 8,3 Дж/(К моль) – универсальная газовая постоянная. Тогда d logP = – (mg/RT )dh = – bdh = – dh /H, где градиент давления в логарифмической шкале. Обратную ему величину Н принять называть шкалой высоты атмосферы.

При интегрировании этого уравнения для изотермичой атмосферы (Т = const) или для ее части, где такое приближение допустимо, получается барометрический закон распределения давления с высотой: P = P 0 exp(–h /H 0), где отсчет высот h производится от уровня океана, где стандартное среднее давление составляет P 0 . Выражение H 0 = RT / mg, называется шкалой высоты, которая характеризует протяженность атмосферы, при условии, что температура в ней всюду одинакова (изотермичная атмосфера). Если атмосфера не изотермична, то интегрировать надо с учетом изменения температуры с высотой, а параметр Н – некоторая локальная характеристика слоев атмосферы, зависящая от их температуры и свойств среды.

Стандартная атмосфера.

Модель (таблица значений основных параметров), соответствующая стандартным давлению у основания атмосферы Р 0 и химическому составу, называется стандартной атмосферой. Точнее, это условная модель атмосферы, для которой заданы средние для широты 45° 32ў 33І значения температуры, давления, плотности, вязкости и др. характеристик воздуха на высотах от 2 км ниже уровня моря до внешней границы земной атмосферы. Параметры средней атмосферы на всех высотах рассчитаны по уравнению состояния идеального газа и барометрическому закону в предположении, что на уровне моря давление равно 1013,25 гПа (760 мм рт. ст.), а температура 288,15 К (15,0° С). По характеру вертикального распределения температуры средняя атмосфера состоит из нескольких слоев, в каждом из которых температура аппроксимирована линейной функцией высоты. В самом нижнем из слоев – тропосфере (h Ј 11 км) температура падает на 6,5° C каждым километром подъема. На больших высотах значение и знак вертикального градиента температуры меняются от слоя к слою. Выше 790 км температура составляет около 1000 К и практически не меняется с высотой.

Стандартная атмосфера является периодически уточняемым, узаконенным стандартом, выпускаемым в виде таблиц.

Таблица 1. Стандартная модель атмосферы земли
Таблица 1. СТАНДАРТНАЯ МОДЕЛЬ АТМОСФЕРЫ ЗЕМЛИ . В таблице приведены: h – высота от уровня моря, Р – давление, Т – температура, r – плотность, N – число молекул или атомов в единице объема, H – шкала высоты, l – длина свободного пробега. Давление и температура на высоте 80–250 км, полученные по ракетным данным, имеют более низкие значения. Значения для высот, больших чем 250 км, полученные путем экстраполяции, не очень точны.
h (км) P (мбар) T (°К) r (г/см 3) N (см –3) H (км) l (см)
0 1013 288 1,22· 10 –3 2,55·10 19 8,4 7,4·10 –6
1 899 281 1,11·10 –3 2,31·10 19 8,1·10 –6
2 795 275 1,01·10 –3 2,10·10 19 8,9·10 –6
3 701 268 9,1·10 –4 1,89·10 19 9,9·10 –6
4 616 262 8,2·10 –4 1,70·10 19 1,1·10 –5
5 540 255 7,4·10 –4 1,53·10 19 7,7 1,2·10 –5
6 472 249 6,6·10 –4 1,37·10 19 1,4·10 –5
8 356 236 5,2·10 -4 1,09·10 19 1,7·10 –5
10 264 223 4,1·10 –4 8,6·10 18 6,6 2,2·10 –5
15 121 214 1,93·10 –4 4,0·10 18 4,6·10 –5
20 56 214 8,9·10 –5 1,85·10 18 6,3 1,0·10 –4
30 12 225 1,9·10 –5 3,9·10 17 6,7 4,8·10 –4
40 2,9 268 3,9·10 –6 7,6·10 16 7,9 2,4·10 –3
50 0,97 276 1,15·10 –6 2,4·10 16 8,1 8,5·10 –3
60 0,28 260 3,9·10 –7 7,7·10 15 7,6 0,025
70 0,08 219 1,1·10 –7 2,5·10 15 6,5 0,09
80 0,014 205 2,7·10 –8 5,0·10 14 6,1 0,41
90 2,8·10 –3 210 5,0·10 –9 9·10 13 6,5 2,1
100 5,8·10 –4 230 8,8·10 –10 1,8·10 13 7,4 9
110 1,7·10 –4 260 2,1·10 –10 5,4·10 12 8,5 40
120 6·10 –5 300 5,6·10 –11 1,8·10 12 10,0 130
150 5·10 –6 450 3,2·10 –12 9·10 10 15 1,8·10 3
200 5·10 –7 700 1,6·10 –13 5·10 9 25 3·10 4
250 9·10 –8 800 3·10 –14 8·10 8 40 3·10 5
300 4·10 –8 900 8·10 –15 3·10 8 50
400 8·10 –9 1000 1·10 –15 5·10 7 60
500 2·10 –9 1000 2·10 –16 1·10 7 70
700 2·10 –10 1000 2·10 –17 1·10 6 80
1000 1·10 –11 1000 1·10 –18 1·10 5 80

Тропосфера.

Самый нижний и наиболее плотный слой атмосферы, в котором температура быстро уменьшается с высотой, называется тропосферой. Он содержит до 80% всей массы атмосферы и простирается в полярных и средних широтах до высот 8–10 км, а в тропиках до 16–18 км. Здесь развиваются практически все погодообразующие процессы, происходит тепловой- и влагообмен между Землей и ее атмосферой, образуются облака, возникают различные метеорологические явления, возникают туманы и осадки. Эти слои земной атмосферы находятся в конвективном равновесии и, благодаря активному перемешиванию имеют однородный химический состав, в основном, из молекулярных азота (78%) и кислорода (21%). В тропосфере сосредоточено подавляющее количество природных и техногенных аэрозольных и газовых загрязнителей воздуха. Динамика нижней части тропосферы толщиной до 2 км сильно зависит от свойств подстилающей поверхности Земли, определяющей горизонтальные и вертикальные перемещения воздуха (ветры), обусловленные передачей тепла от более нагретой суши, через ИК-излучение земной поверхности, которое поглощается в тропосфере, в основном, парами воды и углекислого газа (парниковый эффект). Распределение температуры с высотой устанавливается в результате турбулентного и конвективного перемешивания. В среднем оно соответствует падению температуры с высотой примерно на 6,5 К/км.

Скорость ветра в приземном пограничном слое сначала быстро растет с высотой, а выше она продолжает увеличиваться на 2–3 км/с на каждый километр. Иногда в тропосфере возникают узкие планетарные потоки (со скоростью более 30 км/с), западные в средних широтах, а вблизи экватора – восточные. Их называют струйными течениями.

Тропопауза.

У верхней границы тропосферы (тропопаузы) температура достигает минимального значения для нижней атмосферы. Это переходный слой между тропосферой и расположенной над нею стратосферой. Толщина тропопаузы от сотен метров до 1,5–2 км, а температура и высота соответственно в пределах от 190 до 220 К и от 8 до 18 км в зависимости от географической широты и сезона. В умеренных и высоких широтах зимой она ниже, чем летом на 1–2 км и на 8–15 К теплее. В тропиках сезонные изменения значительно меньше (высота 16–18 км, температура 180–200 К). Над струйными течениями возможны разрывы тропопаузы.

Вода в атмосфере Земли.

Важнейшей особенностью атмосферы Земли является наличие значительного количества водяных паров и воды в капельной форме, которую легче всего наблюдать в виде облаков и облачных структур. Степень покрытия неба облаками (в определенный момент или в среднем за некоторый промежуток времени), выраженная в 10-балльной шкале или в процентах, называют облачностью. Форма облаков определяется по международной классификации. В среднем, облака покрывают около половины земного шара. Облачность – важный фактор, характеризующий погоду и климат. Зимой и ночью облачность препятствует понижению температуры земной поверхности и приземного слоя воздуха, летом и днем – ослабляет нагревание земной поверхности солнечными лучами, смягчая климат внутри материков.

Облака.

Облака – скопления взвешенных в атмосфере водяных капель (водяные облака), ледяных кристаллов (ледяные облака) или – тех и других вместе (смешанные облака). При укрупнении капель и кристаллов они выпадают из облаков в виде осадков. Облака образуются, главным образом, в тропосфере. Они возникают в результате конденсации водяного пара, содержащегося в воздухе. Диаметр облачных капель порядка нескольких мкм. Содержание жидкой воды в облаках – от долей до нескольких граммов на м 3 . Облака различают по высоте: Согласно международной классификации существует 10 родов облаков: перистые, перисто-кучевые, перисто-слоистые, высококучевые, высокослоистые, слоисто-дождевые, слоистые, слоисто-кучевые, кучево-дождевые, кучевые.

В стратосфере наблюдаются также перламутровые облака, а в мезосфере – серебристые облака.

Перистые облака – прозрачные облака в виде тонких белых нитей или пелены с шелковистым блеском, не дающие тени. Перистые облака состоят из ледяных кристаллов, образуются в верхних слоях тропосферы при очень низких температурах. Некоторые виды перистых облаков служат предвестниками смены погоды.

Перисто-кучевые облака – гряды или слои тонких белых облаков верхней тропосферы. Перисто-кучевые облака построены из мелких элементов, имеющих вид хлопьев, ряби, маленьких шариков без теней и состоят преимущественно из ледяных кристаллов.

Перисто-слоистые облака – белесоватая полупрозрачная пелена в верхней тропосфере, обычно волокнистая, иногда размытая, состоящая из мелких игольчатых или столбчатых ледяных кристаллов.

Высококучевые облака – белые, серые или бело-серые облака нижних и средних слоев тропосферы. Высококучевые облака имеют вид слоев и гряд, как бы построенных из лежащих друг над другом пластинок, округлых масс, валов, хлопьев. Высококучевые облака образуются при интенсивной конвективной деятельности и обычно состоят из переохлажденных капелек воды.

Высокослоистые облака – сероватые или синеватые облака волокнистой или однородной структуры. Высокослоистые облака наблюдаются в средней тропосфере, простираются на несколько км в высоту и иногда на тысячи км в горизонтальном направлении. Обычно высокослоистые облака входят в состав фронтальных облачных систем, связанных с восходящими движениями воздушных масс.

Слоисто-дождевые облака – низкий (от 2 и выше км) аморфный слой облаков однообразно-серого цвета, дающий начало обложному дождю или снегу. Слоисто-дождевые облака – сильно развиты по вертикали (до нескольких км) и горизонтали (несколько тысяч км), состоят из переохлажденных капель воды в смеси со снежинками обычно связаны с атмосферными фронтами.

Слоистые облака – облака нижнего яруса в виде однородного слоя без определенных очертаний, серого цвета. Высота слоистых облаков над земной поверхностью составляет 0,5–2 км. Изредка из слоистых облаков выпадает морось.

Кучевые облака – плотные, днем ярко-белые облака со значительным вертикальным развитием (до 5 км и более). Верхние части кучевых облаков имеют вид куполов или башен с округлыми очертаниями. Обычно кучевые облака возникают как облака конвекции в холодных воздушных массах.

Слоисто-кучевые облака – низкие (ниже 2 км) облака в виде серых или белых не волокнистых слоев или гряд из круглых крупных глыб. Вертикальная мощность слоисто-кучевых облаков невелика. Изредка слоисто-кучевых облака дают небольшие осадки.

Кучево-дождевые облака – мощные и плотные облака с сильным вертикальным развитием (до высоты 14 км), дающие обильные ливневые осадки с грозовыми явлениями, градом, шквалами. Кучево-дождевые облака развиваются из мощных кучевых облаков, отличаясь от них верхней частью, состоящей из кристаллов льда.



Стратосфера.

Через тропопаузу, в среднем на высотах от 12 до 50 км, тропосфера переходит в стратосферу. В нижней части, на протяжении около 10 км, т.е. до высот около 20 км, она изотермична (температура около 220 К). Затем она растет с высотой, достигая максимума около 270 К на высоте 50–55 км. Здесь находится граница между стратосферой и выше лежащей мезосферой, называемая стратопаузой.

В стратосфере значительно меньше водяных паров. Все же иногда наблюдаются – тонкие просвечивающие перламутровые облака, изредка возникающие в стратосфере на высоте 20–30 км. Перламутровые облака видны на темном небе после захода и перед восходом Солнца. По форме перламутровые облака напоминают перистые и перисто-кучевые облака.

Средняя атмосфера (мезосфера).

На высоте около 50 км с пика широкого температурного максимума начинается мезосфера. Причиной увеличения температуры в области этого максимума является экзотермическая (т.е. сопровождающаяся выделением тепла) фотохимическая реакция разложения озона: О 3 + hv ® О 2 + О. Озон возникает в результате фотохимического разложения молекулярного кислорода О 2

О 2 + hv ® О + О и последующей реакции тройного столкновения атома и молекулы кислорода с какой-нибудь третьей молекулой М.

О + О 2 + М ® О 3 + М

Озон жадно поглощает ультрафиолетовое излучение в области от 2000 до 3000Å, и это излучение разогревает атмосферу. Озон, находящийся в верхней атмосфере, служит своеобразным щитом, охраняющим нас от действия ультрафиолетового излучения Солнца. Без этого щита развитие жизни на Земле в ее современных формах вряд ли было бы возможным.

В целом, на всем протяжении мезосферы температура атмосферы уменьшается до минимального ее значения около 180 К на верхней границе мезосферы (называемой мезопауза, высота около 80 км). В окрестности мезопаузы, на высотах 70–90 км, может возникать очень тонкий слой ледяных кристаллов и частиц вулканической и метеоритной пыли, наблюдаемый в виде красивого зрелища серебристых облаков вскоре после захода Солнца.

В мезосфере большей частью сгорают попадающие на Землю мелкие твердые метеоритные частицы, вызывающие явление метеоров.

Метеоры, метеориты и болиды.

Вспышки и другие явления в верхней атмосфере Земли вызванные вторжением в нее со скоростью от 11 км/с и выше твердых космических частиц или тел, называются метеороидами. Возникает наблюдаемый яркий метеорный след; наиболее мощные явления, часто сопровождаемые падением метеоритов, называются болидами ; появление метеоров связано с метеорными потоками.

Метеорный поток :

1) явление множественного падения метеоров в течение нескольких часов или дней из одного радианта.

2) рой метеороидов, движущихся по одной орбите вокруг Солнца.

Систематическое появление метеоров в определенной области неба и в определенные дни года, вызванное пересечением орбиты Земли с общей орбитой множества метеоритных тел, движущихся с примерно одинаковыми и одинаково направленными скоростями, из-за чего их пути на небе кажутся выходящими из одной общей точки (радианта). Называются по имени созвездия, где находится радиант.

Метеорные дожди производят глубокое впечатление своими световыми эффектами, но отдельные метеоры видны довольно редко. Гораздо многочисленнее невидимые метеоры, слишком малые, чтобы быть различимыми в момент их поглощения атмосферой. Некоторые из мельчайших метеоров, вероятно, совершенно не нагреваются, а лишь захватываются атмосферой. Эти мелкие частицы с размерами от нескольких миллиметров до десятитысячных долей миллиметра называются микрометеоритами. Количество ежесуточно поступающего в атмосферу метеорного вещества составляет от 100 до 10 000 тонн, причем большая часть этого вещества приходится на микрометеориты.

Поскольку метеорное вещество частично сгорает в атмосфере, ее газовый состав пополняется следами различных химических элементов. Например, каменные метеоры привносят в атмосферу литий. Сгорание металлических метеоров приводит к образованию мельчайших сферических железных, железоникелевых и других капелек, которые проходят сквозь атмосферу и осаждаются на земной поверхности. Их можно обнаружить в Гренландии и Антарктиде, где почти без изменений годами сохраняются ледниковые покровы. Океанологи находят их в донных океанических отложениях.

Большая часть метеорных частиц, поступивших в атмосферу, осаждается примерно в течение 30 суток. Некоторые ученые считают, что эта космическая пыль играет важную роль в формировании таких атмосферных явлений, как дождь, поскольку служит ядрами конденсации водяного пара. Поэтому предполагают, что выпадение осадков статистически связано с крупными метеорными дождями. Однако некоторые специалисты полагают, что, поскольку общее поступление метеорного вещества во много десятков раз превышает его поступление даже с крупнейшим метеорным дождем, изменением в общем количестве этого вещества, происходящим в результате одного такого дождя, можно пренебречь.

Однако несомненно, что наиболее крупные микрометеориты и видимые метеориты оставляют длинные следы ионизации в высоких слоях атмосферы, главным образом в ионосфере. Такие следы можно использовать для дальней радиосвязи, так как они отражают высокочастотные радиоволны.

Энергия поступающих в атмосферу метеоров расходуется главным образом, а может быть и полностью, на ее нагревание. Это одна из второстепенных составляющих теплового баланса атмосферы.

Метеорит – твердое тело естественного происхождения, упавшее на поверхность Земли из космоса. Обычно различают каменные, железо-каменные и железные метеориты. Последние в основном состоят из железа и никеля. Среди найденных метеоритов большинство имеют вес от нескольких граммов до нескольких килограммов. Крупнейший из найденных, – железный метеорит Гоба весит около 60 тонн и до сих пор лежит там же, где был обнаружен, в Южной Африке. Большинство метеоритов представляют собой осколки астероидов, но некоторые метеориты, возможно, попали на Землю с Луны и даже с Марса.

Болид – очень яркий метеор, иногда наблюдаемый даже днем, часто оставляющий после себя дымный след и сопровождаемый звуковыми явлениями; нередко заканчивается падением метеоритов.



Термосфера.

Выше температурного минимума мезопаузы начинается термосфера, в которой температура, сначала медленно, а потом быстро вновь начинает расти. Причиной является поглощение ультрафиолетового, излучения Солнца на высотах 150–300 км, обусловленное ионизацией атомарного кислорода: О + hv ® О + + е.

В термосфере температура непрерывно растет до высоты около 400 км, где она достигает днем в эпоху максимума солнечной активности 1800 К. В эпоху минимума эта предельная температура может быть меньше 1000 К. Выше 400 км атмосфера переходит в изотермичную экзосферу. Критический уровень (основание экзосферы) находится на высоте около 500 км.

Полярные сияния и множество орбит искусственных спутников, а так же серебристые облака – все эти явления происходят в мезосфере и термосфере.

Полярные сияния.

В высоких широтах во время возмущений магнитного поля наблюдаются полярные сияния. Они могут продолжаться несколько минут, но часто видимы в течение нескольких часов. Полярные сияния сильно различаются по форме, цвету и интенсивности, причем все эти характеристики иногда очень быстро меняются во времени. Спектр полярных сияний состоит из эмиссионных линий и полос. В спектре сияний усиливаются некоторые из эмиссий ночного неба, прежде всего зеленая и красная линии l 5577 Å и l 6300 Å кислорода. Бывает, что одна из этих линий во много раз интенсивнее другой, и это определяет видимый цвет сияния: зеленый или красный. Возмущения магнитного поля сопровождаются также нарушениями радиосвязи в полярных районах. Причиной нарушения являются изменения в ионосфере, которые означают, что во время магнитных бурь действует мощный источник ионизации. Установлено, что сильные магнитные бури происходят при наличии вблизи центра солнечного диска больших групп пятен. Наблюдения показали, что бури связаны не с самими пятнами, а с солнечными вспышками, которые появляются во время развития группы пятен.

Полярные сияния – это световая гамма изменяющейся интенсивности с быстрыми движениями, наблюдаемая в высокоширотных районах Земли. Визуальное полярное сияние содержит зеленую 5577Å) и красную (6300/6364Å) эмиссионные линии атомарного кислорода и молекулярные полосы N 2 , которые возбуждаются энергичными частицами солнечного и магнитосферного происхождения. Эти эмиссии обычно высвечиваются на высоте около 100 км и выше. Термин оптическое полярное сияние используется для обозначения визуальных полярных сияний и их эмиссионного спектра от инфракрасной до ультрафиолетовой области. Энергия излучения в инфракрасной части спектра существенно превосходит энергию видимой области. При появлении полярных сияний наблюдались эмиссии в диапазоне УНЧ (

Реальные формы полярных сияний трудно классифицировать; наиболее употребительны следующие термины:

1. Спокойные однородные дуги или полосы. Дуга обычно простирается на ~1000 км в направлении геомагнитной параллели (в направлении на Солнце в полярных районах) и имеет ширину от одного до нескольких десятков километров. Полоса – это обобщение понятия дуги, она обычно не имеет правильной дугообразной формы, а изгибается в виде буквы S или в виде спиралей. Дуги и полосы располагаются на высотах 100–150 км.

2. Лучи полярного сияния. Этот термин относится к авроральной структуре, вытянутой вдоль магнитных силовых линий, с протяженностью по вертикали от нескольких десятков до нескольких сотен километров. Протяженность лучей по горизонтали невелика, от нескольких десятков метров до нескольких километров. Обычно лучи наблюдаются в дугах или как отдельные структуры.

3. Пятна или поверхности. Это изолированные области свечения, не имеющие определенной формы. Отдельные пятна могут быть связаны между собой.

4. Вуаль. Необычная форма полярного сияния, представляющая собой однородного свечение, покрывающее большие участки небосвода.

По структуре полярные сияния подразделяются на однородные, половатые и лучистые. Используются различные термины; пульсирующая дуга, пульсирующая поверхность, диффузная поверхность, лучистая полоса, драпри и т.д. Существует классификация полярных сияний по их цвету. По этой классификации полярные сияния типа А . Верхней части или полностью имеют красный цвет (6300–6364 Å). Они обычно появляются на высотах 300–400 км при высокой геомагнитной активности.

Полярные сияния типа В окрашены в нижней части в красный цвет и связанны со свечением полос первой положительной системы N 2 и первой отрицательной системы O 2 . Такие формы сияния появляются во время наиболее активных фаз полярных сияний.

Зоны полярных сиянийэто зоны максимальной частоты появления сияний в ночное время, по данным наблюдателей в фиксированной точке на поверхности Земли. Зоны располагаются на 67° северной и южной широты, а их ширина составляет около 6°. Максимум появлений полярных сияний, соответствующий данному моменту геомагнитного местного времени, происходит в овалоподобных поясах (овал полярных сияний), которые располагаются асимметрично вокруг северного и южного геомагнитных полюсов. Овал полярных сияний фиксирован в координатах широта – время, а зона полярных сияний является геометрическим местом точек полуночной области овала в координатах широта – долгота. Овальный пояс располагается приблизительно на 23° от геомагнитного полюса в ночном секторе и на 15° в дневном секторе.

Овал полярных сияний и зоны полярных сияний. Расположение овала полярных сияний зависит от геомагнитной активности. Овал становится шире при высокой геомагнитной активности. Зоны полярных сияний или границы овала полярных сияний лучше представляются значением L 6,4, чем дипольными координатами. Геомагнитные силовые линии на границе дневного сектора овала полярных сияний совпадают с магнитопаузой. Наблюдается изменение положения овала полярных сияний в зависимости от угла между геомагнитной осью и направлением Земля – Солнце. Овал полярных сияний определяется также на основе данных о высыпаниях частиц (электронов и протонов) определенных энергий. Его положение может быть независимо определено по данным о каспах на дневной стороне и в хвосте магнитосферы.

Суточная вариация частоты появления полярных сияний в зоне полярных сияний имеет максимум в геомагнитную полночь и минимум в геомагнитный полдень. На приэкваториальной стороне овала частота появления полярных сияний резко уменьшается, но форма суточных вариаций сохраняется. На приполюсной стороне овала частота появления полярных сияний уменьшается постепенно и характеризуется сложными суточными изменениями.

Интенсивность полярных сияний.

Интенсивность полярных сияний определяется измерением кажущейся поверхности яркости. Поверхность яркости I полярного сияния в определенном направлении определяется суммарной эмиссией 4рI фотон/(см 2 с). Так как эта величина не является истинной поверхностной яркостью, а представляет собой эмиссию из столба, обычно при исследовании полярных сияний используют единицу фотон/(см 2 ·столб·с). Обычная единица для измерения суммарной эмиссии – Рэлей (Рл) равный 10 6 фотон/(см 2 ·столб.·с). Более практичные единицы интенсивности полярных сияний определяется по эмиссиям отдельной линии или полосы. Например, интенсивность полярных сияний определяется международным коэффициентами яркости (МКЯ) по данным об интенсивности зеленой линии (5577 Å); 1 кРл = I МКЯ, 10 кРл = II МКЯ, 100 кРл = III МКЯ, 1000 кРл = IV МКЯ (максимальная интенсивность полярного сияния). Эта классификация не может быть использована для сияний красного цвета. Одним из открытий эпохи (1957–1958) стало установление пространственно-временного распределения полярных сияний в виде овала, смещенного относительно магнитного полюса. От простых представлений о круговой форме распределения полярных сияний относительно магнитного полюса был совершен переход к современной физике магнитосферы. Честь открытия принадлежит О.Хорошевой, а интенсивную разработку идей овала полярных сияний осуществили Г.Старков, Я.Фельдштейн, С-И.Акасофу и ряд других исследователей. Овал полярных сияний представляет собой область наиболее интенсивного воздействия солнечного ветра на верхнюю атмосферу Земли. Интенсивность полярных сияний наибольшая именно в овале, а за его динамикой ведутся непрерывные наблюдения с помощью спутников.

Устойчивые авроральные красные дуги.

Устойчивая авроральная красная дуга, иначе называемая среднеширотной красной дугой или М-дугой , представляет собой субвизуальную (ниже предела чувствительности глаза) широкую дугу, вытянутую с востока на запад на тысячи километров и опоясывающую, возможно, всю Землю. Широтная протяженность дуги 600 км. Излучение устойчивой авроральной красной дуги практически монохроматично в красных линиях l 6300 Å и l 6364 Å. Недавно сообщалось также о слабых эмиссионных линиях l 5577 Å (OI) и l 4278 Å (N + 2). Устойчивые красные дуги классифицируются как полярные сияния, но они проявляются на гораздо больших высотах. Нижняя граница располагается на высоте 300 км, верхний предел около 700 км. Интенсивность спокойной авроральной красной дуги в эмиссии l 6300 Å составляет от 1 до 10 кРл (типичная величина 6 кРл). Порог чувствительности глаза на этой длине волны около 10 кРл, так что дуги редко наблюдаются визуально. Однако, наблюдения показали, что их яркость составляет >50 кРл в 10% ночей. Обычное время жизни дуг около одних суток, и они редко появляются в последующие дни. Радиоволны от спутников или радиоисточников, пересекающих устойчивые авроральные красные дуги, подвержены мерцаниям, что указывает на существование неоднородностей электронной плотности. Теоретическое объяснение красных дуг состоит в том, что нагретые электроны области F ионосферы вызывают увеличение атомов кислорода. Спутниковые наблюдения показывают увеличение электронной температуры вдоль силовых линий геомагнитного поля, которые пересекают устойчивые авроральные красные дуги. Интенсивность этих дуг положительно коррелирует с геомагнитной активностью (бурями), а частота появления дуг – с солнечной пятнообразовательной активностью.

Изменяющееся полярное сияние.

Некоторые формы полярных сияний испытывают квазипериодические и когерентные временные вариации интенсивности. Эти полярные сияния с примерно стационарной геометрией и быстрыми периодическими вариациями, происходящими в фазе, называются изменяющимися полярными сияниями. Они классифицируются как полярные сияния формы р по данным Международного атласа полярных сияний Более детальное подразделение изменяющихся полярных сияний:

р 1 (пульсирующее полярное сияние) представляет собой свечение с однородными фазовыми вариациями яркости по всей форме полярного сияния. По определению, в идеальном пульсирующем полярном сиянии пространственная и временная части пульсации могут быть разделены, т.е. яркость I (r,t ) = I s (r I T (t ). В типичном полярном сиянии р 1 происходят пульсации с частотой от 0,01 до 10 Гц низкой интенсивности (1–2 кРл). Большинство полярных сияний р 1 – это пятна или дуги, пульсирующие с периодом в несколько секунд.

р 2 (пламенное полярное сияние). Этот термин обычно используется для обозначения движений, подобных языкам пламени, заполняющим небосвод, а не для описания отдельной формы. Сияния имеют форму дуг и обычно движутся вверх с высоты 100 км. Эти полярные сияния относительно редки и чаще происходят за пределами полярных сияний.

р 3 (мерцающее полярное сияние). Это полярные сияния с быстрыми, иррегулярными или регулярными вариациями яркости, создающие впечатление мерцающего пламени на небосводе. Они появляются незадолго до распада полярного сияния. Обычно наблюдаемая частота вариаций р 3 равна 10 ± 3 Гц.

Термин струящееся полярное сияние, используемый для другого класса пульсирующих полярных сияний, относится к иррегулярным вариациям яркости, быстро движущимся горизонтально в дугах и полосах полярных сияний.

Изменяющееся полярное сияние – это одно из солнечно-земных явлений, сопровождающих пульсации геомагнитного поля и аврорального рентгеновского излучения, вызванные высыпанием частиц солнечного и магнитосферного происхождения.

Свечение полярной шапки характеризуется большой интенсивностью полосы первой отрицательной системы N + 2 (л 3914 Å). Обычно эти полосы N + 2 интенсивнее зеленой линии OI l 5577 Å в пять раз, абсолютная интенсивность свечения полярной шапки составляет от 0,1 до 10 кРл (обычно 1–3 кРл). При этих сияниях, появляющихся в периоды ППШ, однородное свечение охватывает всю полярную шапку вплоть до геомагнитной широты 60° на высотах о 30 до 80 км. Оно генерируется преимущественно солнечными протонами и d-частицами с энергиями 10–100 МэВ, создающими максимум ионизации на этих высотах. Имеется и другой тип свечения в зонах полярных сияний, называемый мантийным полярным сиянием. Для этого типа аврорального свечения суточный максимум интенсивности, приходящийся на утренние часы, составляет 1–10 кРл, а минимум интенсивности в пять раз слабее. Наблюдения мантийных полярных сияний немногочисленны, их интенсивность зависит от геомагнитной и солнечной активности.

Свечение атмосферы определяется как излучение, образованное и испускаемое атмосферой планеты. Это нетепловое излучение атмосферы, за исключением эмиссии полярных сияний, молниевых разрядов и излучения метеорных следов. Этот термин используется применительно к земной атмосфере (ночное свечение, сумеречное свечение и дневное свечение). Свечение атмосферы составляет только часть имеющегося в атмосфере света. Другими источниками являются свет звезд, зодиакальный свет и дневной рассеянный свет Солнца. Временами свечение атмосферы может составлять до 40% общего количества света. Свечение атмосферы возникает в атмосферных слоях изменяющейся высоты и толщины. Спектр свечения атмосферы охватывает длины волн от 1000 Å до 22,5 мкм. Основная линия излучения в свечении атмосферы – l 5577 Å, появляющаяся на высоте 90–100 км в слое толщиной 30–40 км. Возникновение свечения обусловлено механизмом Чемпена, основанным на рекомбинации атомов кислорода. Другие эмиссионные линии – это л 6300 Å, появляющаяся в случае диссоциативной рекомбинации О + 2 и эмиссии NI l 5198/5201 Å и NI l 5890/5896 Å.

Интенсивность свечения атмосферы измеряется в Рэлеях. Яркость (в Рэлеях) равна 4 рв, где в – угловая поверхность яркость излучающего слоя в единицах 10 6 фотон/(см 2 ·стер·с). Интенсивность свечения зависит от широты (по-разному для различных эмиссий), а также меняется в течение суток с максимумом вблизи полуночи. Отмечена положительная корреляция для свечения атмосферы в эмиссии l 5577 Å с числом солнечных пятен и потоком солнечного излучения на длине волны 10,7 см. Свечение атмосферы наблюдается во время спутниковых экспериментов. Из космического пространства оно выглядит как кольцо света вокруг Земли и имеет зеленоватый цвет.









Озоносфера.

На высотах 20–25 км достигается максимальная концентрация ничтожного количества озона О 3 (до 2Ч10 –7 от содержания кислорода!), который возникает под действием солнечного ультрафиолетового излучения на высотах примерно от 10 до 50 км, защищая планету от ионизующего солнечного излучения. Несмотря на исключительно малое количество молекул озона, они предохраняют все живое на Земле от губительного действия коротковолнового (ультрафиолетового и рентгеновского) излучения Солнца. Если осадить все молекулы к основанию атмосферы, то получится слой, толщиной не более 3–4 мм! На высотах более 100 км растет доля легких газов, и на очень больших высотах преобладают гелий и водород; многие молекулы диссоциируют на отдельные атомы, которые, ионизуясь под действием жесткого излучения Солнца, образуют ионосферу. Давление и плотность воздуха в атмосфере Земли с высотой убывают. В зависимости от распределения температуры атмосферу Земли подразделяют на тропосферу, стратосферу, мезосферу, термосферу и экзосферу.

На высоте 20–25 км располагается озонный слой . Озон образуется за счет распада молекул кислорода при поглощении ультрафиолетового излучения Солнца с длинами волн короче 0,1–0,2 мкм. Свободный кислород соединяясь с молекулами О 2 и образует озон О 3 , который жадно поглощает весь ультрафиолет короче 0,29 мкм. Молекулы озона О 3 легко разрушаются под действием коротковолнового излучения. Поэтому, несмотря на свою разреженность, озонный слой эффективно поглощает ультрафиолетовое излучение Солнца, прошедшее сквозь более высокие и прозрачные атмосферные слои. Благодаря этому живые организмы на Земле защищены от губительного воздействия ультрафиолетового света Солнца.



Ионосфера.

Излучение Солнца ионизирует атомы и молекулы атмосферы. Степень ионизации становится существенной уже на высоте 60 километров и неуклонно растет с удалением от Земли. На различных высотах в атмосфере происходят последовательно процессы диссоциации различных молекул и последующая ионизация различных атомов и ионов. В основном это молекулы кислорода О 2 , азота N 2 и их атомы. В зависимости от интенсивности этих процессов различные слои атмосферы, лежащие выше 60-ти километров, называются ионосферными слоями, а их совокупность ионосферой. Нижний слой, ионизация которого несущественна, называют нейтросферой.

Максимальная концентрация заряженных частиц в ионосфере достигается на высотах 300–400 км.

История изучения ионосферы.

Гипотеза о существовании проводящего слоя в верхней атмосфере была высказана в 1878 английским ученым Стюартом для объяснения особенностей геомагнитного поля. Затем в 1902, независимо друг от друга, Кеннеди в США и Хевисайд в Англии указали, что для объяснения распространения радиоволн на большие расстояния необходимо предположить существование в высоких слоях атмосферы областей с большой проводимостью. В 1923 академик М.В.Шулейкин, рассматривая особенности распространения радиоволн различных частот, пришел к выводу о наличии в ионосфере не менее двух отражающих слоев. Затем в 1925 английские исследователи Эпплтон и Барнет, а также Брейт и Тьюв впервые экспериментально доказали существование областей, отражающих радиоволны, и положили начало их систематическому изучению. С того времени ведется систематическое изучение свойств этих слоев, в целом называемых ионосферой, играющих существенную роль в ряде геофизических явлений, определяющих отражение и поглощение радиоволн, что очень важно для практических целей, в частности для обеспечения надежной радиосвязи.

В 1930-е были начаты систематические наблюдения состояния ионосферы. В нашей стране по инициативе М.А.Бонч-Бруевича были созданы установки для импульсного ее зондирования. Были исследованы многие общие свойства ионосферы, высоты и электронная концентрацию основных ее слоев.

На высотах 60–70 км наблюдается слой D, на высотах 100–120 км слой Е , на высотах, на высотах 180–300 км двойной слой F 1 и F 2 . Основные параметры этих слоев приведены в Таблице 4.

Таблица 4.
Таблица 4.
Область ионосферы Высота максимума, км T i , K День Ночь n e , см –3 a΄, ρм 3 с 1
мин n e , см –3 макс n e , см –3
D 70 20 100 200 10 10 –6
E 110 270 1,5·10 5 3·10 5 3000 10 –7
F 1 180 800–1500 3·10 5 5·10 5 3·10 –8
F 2 (зима) 220–280 1000–2000 6·10 5 25·10 5 ~10 5 2·10 –10
F 2 (лето) 250–320 1000–2000 2·10 5 8·10 5 ~3·10 5 10 –10
n e – электронная концентрация, е – заряд электрона, T i – температура ионов, a΄ – κоэффициент рекомбинации (который определяет величину n e и ее изменение во времени)

Приведены средние значения, поскольку они меняются для различных широт, в зависимости от времени суток и сезонов. Подобные данные необходимы для обеспечения дальней радиосвязи. Они используются при выборе рабочих частот для различных коротковолновых линий радиосвязи. Знание их изменения в зависимости от состояния ионосферы в разное время суток и в разные сезоны исключительно важно для обеспечения надежности радиосвязи. Ионосферой называется совокупность ионизированных слоев земной атмосферы, начинающаяся с высот порядка 60 км и простирающаяся до высот в десятки тысяч км. Основной источник ионизации земной атмосферы – ультрафиолетовое и рентгеновское излучение Солнца, возникающее главным образом в солнечной хромосфере и короне. Кроме того, на степень ионизации верхней атмосферы влияют солнечные корпускулярные потоки, возникающие во время вспышек на Солнце, а также космические лучи и метеорные частицы.

Ионосферные слои

– это области в атмосфере, в которых достигаются максимальные значения концентрации свободных электронов (т.е. их числа в единице объема). Электрически заряженные свободные электроны и (в меньшей степени менее подвижные ионы), возникающие в результате ионизации атомов атмосферных газов, взаимодействуя с радиоволнами (т.е. электромагнитными колебаниями), могут изменять их направление, отражая или преломляя их, и поглощать их энергию. В результате этого при приеме далеких радиостанций могут возникать различные эффекты, например, замирания радиосвязи, усиления слышимости удаленных станций, блекауты и т.п. явления.

Методы исследования.

Классические методы изучения ионосферы с Земли сводятся к импульсному зондированию - посылки радиоимпульсов и наблюдения их отражений от различных слоев ионосферы с измерением времени запаздывания и изучением интенсивности и формы отраженных сигналов. Измеряя высоты отражения радиоимпульсов на различных частотах, определяя критические частоты различных областей (критической называется несущая частота радиоимпульса, для которой данная область ионосферы становится прозрачной), можно определять значение электронной концентрации в слоях и действующие высоты для заданных частот, выбирать оптимальные частоты для заданных радиотрасс. С развитием ракетной техники и с наступлением космической эры искусственных спутников Земли (ИСЗ) и других космических аппаратов, появилась возможность непосредственного измерения параметров околоземной космической плазмы, нижней частью которой и является ионосфера.

Измерения электронной концентрации, проводимые с борта специально запускаемых ракет и по трассам полетов ИСЗ, подтвердили и уточнили ранее полученные наземными методами данные о структуре ионосферы, распределении концентрации электронов с высотой над различными районами Земли и позволили получить значения электронной концентрации выше главного максимума – слоя F . Ранее это было невозможно сделать методами зондирования по наблюдениям отраженных коротковолновых радиоимпульсов. Обнаружено, что в некоторых районах земного шара существуют достаточно устойчивые области с пониженной электронной концентрацией, регулярные «ионосферные ветры», в ионосфере возникают своеобразные волновые процессы, переносящие местные возмущения ионосферы на тысячи километров от места их возбуждения, и многое другое. Создание особо высокочувствительных приемных устройств позволило осуществить на станциях импульсного зондирования ионосферы прием импульсных сигналов, частично отраженных от самых нижних областей ионосферы (станции частичных отражений). Использование мощных импульсных установок в метровом и дециметровом диапазонах волн с применением антенн, позволяющих осуществлять высокую концентрацию излучаемой энергии, дало возможность наблюдать сигналы, рассеянные ионосферой на различных высотах. Изучение особенностей спектров этих сигналов, не когерентно рассеянных электронами и ионами ионосферной плазмы (для этого использовались станции некогерентного рассеяния радиоволн) позволило определить концентрацию электронов и ионов, их эквивалентную температуру на различных высотах вплоть до высот в несколько тысяч километров. Оказалось, что для используемых частот ионосфера достаточно прозрачна.

Концентрация электрических зарядов (электронная концентрация равна ионной) в земной ионосфере на высоте 300 км составляет днем около 10 6 см –3 . Плазма такой плотности отражает радиоволны длиной более 20 м, а более короткие пропускает.

Типичное вертикальное распределение электронной концентрации в ионосфере для дневных и ночных условий.

Распространение радиоволн в ионосфере.

Стабильный прием дальних радиовещательных станций зависит от используемых частот, а также от времени суток, сезона и, кроме того, от солнечной активности. Солнечная активность существенно влияет на состояние ионосферы. Радиоволны, излучаемые наземной станцией, распространяются прямолинейно, как и все виды электромагнитных колебаний. Однако следует учесть, что как поверхность Земли, так и ионизированные слои ее атмосферы, служат как бы обкладками огромного конденсатора, воздействующими на них подобно действию зеркал на свет. Отражаясь от них, радиоволны могут преодолевать многие тысячи километров, огибая земной шар громадными скачками в сотни и тысячи км, отражаясь попеременно от слоя ионизированного газа и от поверхности Земли или воды.

В 20-х годах прошлого столетия считалось, что радиоволны короче 200 м вообще не пригодны для дальней связи из-за сильного поглощения. Первые эксперименты по дальнему приёму коротких волн через Атлантику между Европой и Америкой провели английский физик Оливер Хэвисайд и американский инженер-электрик Артур Кеннели. Независимо друг от друга они предположили, что где-то вокруг Земли существует ионизированный слой атмосферы, способный отражать радиоволны. Его назвали слоем Хэвисайда – Кеннели, а затем – ионосферой.

Согласно современным представлениям ионосфера состоит из отрицательно заряженных свободных электронов и положительно заряженных ионов, в основном молекулярного кислорода O + и окиси азота NO + . Ионы и электроны образуются в результате диссоциации молекул и ионизации нейтральных атомов газа солнечным рентгеновским и ультрафиолетовым излучением. Для того, чтобы ионизовать атом необходимо сообщить ему энергию ионизации, основным источником которой для ионосферы является ультрафиолетовое, рентгеновское и корпускулярное излучение Солнца.

Пока газовая оболочка Земли освещена Солнцем, в ней непрерывно образуются всё новые и новые электроны, но одновременно часть электронов, сталкиваясь с ионами, рекомбинирует, вновь образуя нейтральные частицы. После захода Солнца образование новых электронов почти прекращается, и число свободных электронов начинает убывать. Чем больше свободных электронов в ионосфере, тем лучше от неё отражаются волны высокой частоты. С уменьшением электронной концентрации прохождение радиоволн возможно только на низкочастотных диапазонах. Вот почему ночью, как правило, возможен приём дальних станций лишь в диапазонах 75, 49, 41 и 31 м. Электроны распределены в ионосфере неравномерно. На высоте от 50 до 400 км имеется несколько слоёв или областей повышенной концентрации электронов. Эти области плавно переходят одна в другую и по-разному влияют на распространение радиоволн КВ диапазона. Верхний слой ионосферы обозначают буквой F . Здесь наиболее высокая степень ионизации (доля заряженных частиц порядка 10 –4). Она расположена на высоте более 150 км над поверхностью Земли и играет основную отражательную роль при дальнем распространении радиоволн высокочастотных КВ диапазонов. В летние месяцы область F распадается на два слоя – F 1 и F 2 . Слой F1 может занимать высоты от 200 до 250 км, а слой F 2 как бы «плавает» в интервале высот 300–400 км. Обычно слой F 2 ионизирован значительно сильнее слоя F 1 . Ночью слой F 1 исчезает, а слой F 2 остается, медленно теряя до 60% степени своей ионизации. Ниже слоя F на высотах от 90 до 150 км расположен слой E , ионизация которого происходит под воздействием мягкого рентгеновского излучения Солнца. Степень ионизации слоя E ниже, чем слоя F , днем прием станций низкочастотных КВ диапазонов 31 и 25 м происходит при отражении сигналов от слоя E . Обычно это станции, расположенные на расстоянии 1000–1500 км. Ночью в слое E ионизация резко уменьшается, но и в это время она продолжает играть заметную роль в приёме сигналов станций диапазонов 41, 49 и 75 м.

Большой интерес для приема сигналов высокочастотных КВ диапазонов 16, 13 и 11 м представляют возникающие в области E прослойки (облака) сильно повышенной ионизации. Площадь этих облаков может изменяться от единиц до сотен квадратных километров. Этот слой повышенной ионизации получил название – спорадический слой E и обозначается Es . Облака Es могут перемещаться в ионосфере под воздействием ветра и достигать скорости до 250 км/час. Летом в средних широтах в дневное время происхождение радиоволн за счет облаков Es за месяц бывает 15–20 дней. В районе экватора он присутствует почти всегда, а в высоких широтах обычно появляется ночью. Иногда, в годы низкой солнечной активности, когда нет прохождения на высокочастотный КВ диапазонах, на диапазонах 16, 13 и 11 м с хорошей громкостью вдруг появляются дальние станции, сигналы которых многократно отразились от Es.

Самая нижняя область ионосферы – область D расположена на высотах между 50 и 90 км. Здесь сравнительно мало свободных электронов. От области D хорошо отражаются длинные и средние волны, а сигналы станций низкочастотный КВ диапазонов сильно поглощаются. После захода Солнца ионизация очень быстро исчезает и появляется возможность принимать дальние станции в диапазонах 41, 49 и 75 м, сигналы которых отражаются от слоев F 2 и E . Отдельные слои ионосферы играют важную роль в распространении сигналов КВ радиостанций. Воздействие на радиоволны происходит главным образом из-за наличия в ионосфере свободных электронов, хотя механизм распространения радиоволн связан с наличием крупных ионов. Последние также представляют интерес при изучении химических свойств атмосферы, поскольку они активнее нейтральных атомов и молекул. Химические реакции, протекающие в ионосфере, играют важную роль в ее энергетическом и электрическом балансе.

Нормальная ионосфера. Наблюдения, проведенные при помощи геофизических ракет и спутников, дали массу новой информации, свидетельствующей, что ионизация атмосферы происходит под воздействием солнечной радиации широкого спектра. Основная ее часть (более 90%) сосредоточена в видимой части спектра. Ультрафиолетовое излучение с меньшей длиной волны и большей энергией, чем у фиолетовых световых лучей, испускается водородом внутренней части атмосферы Солнца (хромосферы), а рентгеновское излучение, обладающее еще более высокой энергией, – газами внешней оболочки Солнца (короны).

Нормальное (среднее) состояние ионосферы обусловлено постоянным мощным излучением. Регулярные изменения происходят в нормальной ионосфере под воздействием суточного вращения Земли и сезонных различий угла падения солнечных лучей в полдень, но происходят также непредсказуемые и резкие изменения состояния ионосферы.

Возмущения в ионосфере.

Как известно, на Солнце возникают мощные циклически повторяющиеся проявления активности, которые достигают максимума каждые 11 лет. Наблюдения по программе Международного геофизического года (МГГ) совпали с периодом наиболее высокой солнечной активности за весь срок систематических метеорологических наблюдений, т.е. с начала 18 века. В периоды высокой активности яркость некоторых областей на Солнце возрастает в несколько раз, и резко увеличивается мощность ультрафиолетового и рентгеновского излучения. Такие явления называются вспышками на Солнце. Они продолжаются от нескольких минут до одного-двух часов. Во время вспышки извергается солнечная плазма (в основном протоны и электроны), и элементарные частицы устремляются в космическое пространство. Электромагнитное и корпускулярное излучение Солнца в моменты таких вспышек оказывает сильное воздействие на атмосферу Земли.

Первоначальная реакция отмечается через 8 минут после вспышки, когда интенсивное ультрафиолетовое и рентгеновское излучение достигает Земли. В результате резко повышается ионизация; рентгеновские лучи проникают в атмосферу до нижней границы ионосферы; количество электронов в этих слоях возрастает настолько, что радиосигналы почти полностью поглощаются («гаснут»). Дополнительное поглощение радиации вызывает нагрев газа, что способствует развитию ветров. Ионизированный газ является электрическим проводником, и когда он движется в магнитном поле Земли, проявляется эффект динамо-машины и возникает электрический ток. Такие токи могут в свою очередь вызывать заметные возмущения магнитного поля и проявляться в виде магнитных бурь.

Структура и динамика верхней атмосферы существенно определяется неравновесными в термодинамическом смысле процессами, связанными с ионизацией и диссоциацией солнечным излучением, химическими процессами, возбуждением молекул и атомов, их дезактивацией, соударением и другими элементарными процессами. При этом степень неравновесности возрастает с высотой по мере уменьшения плотности. Вплоть до высот 500–1000 км, а часто и выше, степень неравновесности для многих характеристик верхней атмосферы достаточно мала, что позволяет использовать для ее описания классическую и гидромагнитную гидродинамику с учетом химических реакций.

Экзосфера – внешний слой атмосферы Земли, начинающийся с высот в несколько сотен км, из которого легкие, быстро движущиеся атомы водорода могут ускользать в космическое пространство.

Эдвард Кононович

Литература:

Пудовкин М.И. Основы физики Солнца . СПб, 2001
Eris Chaisson, Steve McMillan Astronomy today . Prentice-Hall, Inc. Upper Saddle River, 2002
Материалы в Интернете: http://ciencia.nasa.gov/



10,045×10 3 Дж/(кг*К)(в интервале температур от 0-100°С), C v 8,3710*10 3 Дж/(кг*К) (0-1500°С). Растворимость воздуха в воде при 0°С 0,036%, при 25°С - 0,22%.

Состав атмосферы

История образования атмосферы

Ранняя история

В настоящее время наука не может со стопроцентной точностью проследить все этапы образования Земли. Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в четырёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера . На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углеводородами, аммиаком , водяным паром). Так образовалась вторичная атмосфера . Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • постоянная утечка водорода в межпланетное пространство ;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы , характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Появление жизни и кислорода

С появлением на Земле живых организмов в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа, состав атмосферы начал меняться. Существуют, однако, данные (анализ изотопного состава кислорода атмосферы и выделяющегося при фотосинтезе), свидетельствующие в пользу геологического происхождения атмосферного кислорода.

Первоначально кислород расходовался на окисление восстановленых соединений - углеводородов , закисной формы железа , содержавшейся в океанах и др. По окончанию данного этапа содержание кислорода в атмосфере стало расти.

В 1990-x годах были проведены эксперименты по созданию замкнутой экологической системы («Биосфера 2»), в ходе которых не удалось создать стабильную систему, обладающую единым составом воздуха. Влияние микроорганизмов привело к снижению уровня кислорода и увеличению количества углекислого газа.

Азот

Образование большого количества N 2 обусловлено окислением первичной аммиачно-водородной атмосферы молекулярным О 2 , который стал поступать с поверхности планеты в результате фотосинтеза, как предполагается, около 3 млрд. лет назад (по другой версии, кислород атмосферы имеет геологическое происхождение). Азот окисляется до NO в верхних слоях атмосферы, используется в промышленности и связывается азотфиксирующими бактериями, в то же время N 2 выделяется в атмосферу в результате денитрификации нитратов и др. азотсодержащих соединений.

Азот N 2 инертный газ и вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окислять его и переводить в биологическую форму могут цианобактерии, некоторые бактерии (например клубеньковые, формирующие ризобиальный симбиоз с бобовыми растениями).

Окисление молекулярного азота электрическиими разрядами используется при промышленном изготовлении азотных удобрений, он же привёл к образованию уникальных месторождений селитры в чилийской пустыне Атакама .

Благородные газы

Сжигание топлива - основной источник загрязняющих газов (CО , NO, SO 2). Диоксид серы окисляется О 2 воздуха до SO 3 в высших слоях атмосферы, который взаимодействует с парами Н 2 О и NH 3 , а образующиеся при этом Н 2 SO 4 и (NН 4) 2 SO 4 возвращаются на поверхность Земли вместе с атмосферными осадками. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями Рb .

Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капел морской воды и частиц пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу - одна из возможных причин изменений климата планеты.

Строение атмосферы и характеристика отдельных оболочек

Физическое состояние атмосферы определяется погодой и климатом . Основные параметры атмосферы: плотность воздуха, давление, температура и состав. С увеличением высоты плотность воздуха и атмосферное давление уменьшаются. Температура меняется также в зависимости от изменения высоты. Вертикальное строение атмосферы характеризуется различными температурными и электрическими свойствами, разным состоянием воздуха. В зависимости от температуры в атмосфере различают следующие основные слои: тропосферу, стратосферу, мезосферу, термосферу, экзосферу (сферу рассеяния). Переходные области атмосферы между соседними оболочками называют соответственно тропопауза, стратопауза и т. п.

Тропосфера

Стратосфера

В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180-200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний , зарниц, и др. свечений.

В стратосфере и более высоких слоях под воздействия солнечной радиации молекулы газов диссоциируют - на атомы (выше 80 км диссоциируют СО 2 и Н 2 , выше 150 км - О 2 , выше 300 км - Н 2). На высоте 100-400 км в ионосфере происходит также ионизация газов, на высоте 320 км концентрация заряженных частиц (О + 2 , О − 2 , N + 2) составляет ~ 1/300 от концентрации нейтральных частиц. В верхних слоях атмосферы присутствуют свободные радикалы - ОН , НО 2 и др.

В стратосфере почти нет водяного пара.

Мезосфера

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0°С в стратосфере до −110°С в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~1500°С. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме этих чрезвычайно разреженных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80% массы атмосферы, на долю стратосферы - около 20%; масса мезосферы - не более 0,3%, термосферы - менее 0,05% от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу . Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы называемая гомосферой. Граница между этими слоями называется турбопаузой , она лежит на высоте около 120 км.

Свойства атмосферы

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 15 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа - 40 мм рт. ст., а паров воды −47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным - около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.

На высоте около 19-20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека «космос» начинается уже на высоте 15-19 км.

Плотные слои воздуха - тропосфера и стратосфера - защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация - первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

Атмосфера (от греч. atmos — пар и spharia — шар) — воздушная оболочка Земли, вращающаяся вместе с ней. Развитие атмосферы было тесно связано с геологическими и геохимическими процессами, протекающими на нашей планете, а также с деятельностью живых организмов.

Нижняя граница атмосферы совпадает с поверхностью Земли, так как воздух проникает в мельчайшие поры в почве и растворен даже в воде.

Верхняя граница на высоте 2000-3000 км постепенно переходит в космическое пространство.

Благодаря атмосфере, в которой содержится кислород, возможна жизнь на Земле. Атмосферный кислород используется в процессе дыхания человека, животными, растениями.

Если бы не было атмосферы, на Земле была бы такая же тишина, как на Луне. Ведь звук — это колебание частиц воздуха. Голубой цвет неба объясняется тем, что солнечные лучи, проходя сквозь атмосферу, как через линзу, разлагаются на составляющие цвета. При этом рассеиваются больше всего лучи голубого и синего цветов.

Атмосфера задерживает большую часть ультрафиолетового излучения Солнца, которое губительно действует на живые организмы. Также она удерживает у поверхности Земли тепло, не давая нашей планете охлаждаться.

Строение атмосферы

В атмосфере можно выделить несколько слоев, различающихся по и плотности (рис. 1).

Тропосфера

Тропосфера — самый нижний слой атмосферы, толщина которого над полюсами составляет 8-10 км, в умеренных широтах — 10-12 км, а над экватором — 16-18 км.

Рис. 1. Строение атмосферы Земли

Воздух в тропосфере нагревается от земной поверхности, т. е. от суши и воды. Поэтому температура воздуха в этом слое с высотой понижается в среднем на 0,6 °С на каждые 100 м. У верхней границы тропосферы она достигает -55 °С. При этом в районе экватора на верхней границе тропосферы температура воздуха составляет -70 °С, а в районе Северного полюса -65 °С.

В тропосфере сосредоточено около 80 % массы атмосферы, находится почти весь водяной пар, возникают грозы, бури, облака и осадки, а также происходит вертикальное (конвекция) и горизонтальное (ветер) перемещение воздуха.

Можно сказать, что погода в основном формируется в тропосфере.

Стратосфера

Стратосфера — слой атмосферы, расположенный над тропосферой на высоте от 8 до 50 км. Цвет неба в этом слое кажется фиолетовым, что объясняется разреженностью воздуха, из-за которой солнечные лучи почти не рассеиваются.

В стратосфере сосредоточено 20 % массы атмосферы. Воздух в этом слое разрежен, практически нет водяного пара, а потому почти не образуются облака и осадки. Однако в стратосфере наблюдаются устойчивые воздушные течения, скорость которых достигает 300 км/ч.

В этом слое сосредоточен озон (озоновый экран, озоносфера), слой, который поглощает ультрафиолетовые лучи, не пропуская их к Земле и тем самым защищая живые организмы на нашей планете. Благодаря озону температура воздуха на верхней границе стратосферы находится в пределах от -50 до 4-55 °С.

Между мезосферой и стратосферой расположена переходная зона — стратопауза.

Мезосфера

Мезосфера — слой атмосферы, расположенный на высоте 50-80 км. Плотность воздуха здесь в 200 раз меньше, чем у поверхности Земли. Цвет неба в мезосфере кажется черным, в течение дня видны звезды. Температура воздуха снижается до -75 (-90)°С.

На высоте 80 км начинается термосфера. Температура воздуха в этом слое резко повышается до высоты 250 м, а потом становится постоянной: на высоте 150 км она достигает 220-240 °С; на высоте 500-600 км превышает 1500 °С.

В мезосфере и термосфере под действием космических лучей молекулы газов распадаются на заряженные (ионизированные) частицы атомов, поэтому эта часть атмосферы получила название ионосфера — слой очень разреженного воздуха, расположенный на высоте от 50 до 1000 км, состоящий в основном из ионизированных атомов кислорода, молекул окиси азота и свободных электронов. Для этого слоя характерна высокая наэлектризован- ность, и от него, как от зеркала, отражаются длинные и средние радиоволны.

В ионосфере возникают полярные сияния — свечение разреженных газов под влиянием электрически заряженных летящих от Солнца частиц — и наблюдаются резкие колебания магнитного поля.

Экзосфера

Экзосфера — внешний слой атмосферы, расположенный выше 1000 км. Этот слой еще называют сферой рассеивания, так как частицы газов движутся здесь с большой скоростью и могут рассеиваться в космическое пространство.

Состав атмосферы

Атмосфера — это смесь газов, состоящая из азота (78,08 %), кислорода (20,95 %), углекислого газа (0,03 %), аргона (0,93 %), небольшого количества гелия, неона, ксенона, криптона (0,01 %), озона и других газов, но их содержание ничтожно (табл. 1). Современный состав воздуха Земли установился более сотни миллионов лет назад, однако резко возросшая производственная деятельность человека все же привела к его изменению. В настоящее время отмечается увеличение содержания СО 2 примерно на 10-12 %.

Входящие в состав атмосферы газы выполняют различные функциональные роли. Однако основное значение этих газов определяется прежде всего тем, что они очень сильно поглощают лучистую энергию и тем самым оказывают существенное влияние на температурный режим поверхности Земли и атмосферы.

Таблица 1. Химический состав сухого атмосферного воздуха у земной поверхности

Объемная концентрация. %

Молекулярная масса, ед.

Кислород

Углекислый газ

Закись азота

от 0 до 0,00001

Двуокись серы

от 0 до 0,000007 летом;

от 0 до 0,000002 зимой

От 0 ло 0,000002

46,0055/17,03061

Двуокись азога

Окись углерода

Азот, самый распространенный газ в атмосфере, химически мало активен.

Кислород , в отличие от азота, химически очень активный элемент. Специфическая функция кислорода — окисление органического вещества гетеротрофных организмов, горных пород и недоокисленных газов, выбрасываемых в атмосферу вулканами. Без кислорода не было бы разложения мертвого органического вещества.

Роль углекислого газа в атмосфере исключительно велика. Он поступает в атмосферу в результате процессов горения, дыхания живых организмов, гниения и представляет собой, прежде всего, основной строительный материал для создания органического вещества при фотосинтезе. Кроме этого, огромное значение имеет свойство углекислого газа пропускать коротковолновую солнечную радиацию и поглощать часть теплового длинноволнового излучения, что создаст так называемый парниковый эффект, о котором речь пойдет ниже.

Влияние на атмосферные процессы, особенно на тепловой режим стратосферы, оказывает и озон. Этот газ служит естественным поглотителем ультрафиолетового излучения Солнца, а поглощение солнечной радиации ведет к нагреванию воздуха. Средние месячные значения общего содержания озона в атмосфере изменяются в зависимости от широты местности и времени года в пределах 0,23-0,52 см (такова толщина слоя озона при наземных давлении и температуре). Наблюдается увеличение содержания озона от экватора к полюсам и годовой ход с минимумом осенью и максимумом весной.

Характерным свойством атмосферы можно назвать то, что содержание основных газов (азота, кислорода, аргона) с высотой изменяется незначительно: на высоте 65 км в атмосфере содержание азота — 86 %, кислорода — 19, аргона — 0,91, на высоте же 95 км — азота 77, кислорода — 21,3, аргона — 0,82 %. Постоянство состава атмосферного воздуха по вертикали и по горизонтали поддерживается его перемешиванием.

Кроме газов, в воздухе содержатся водяной пар и твердые частицы. Последние могут иметь как естественное, так и искусственное (антропогенное) происхождение. Это цветочная пыльца, крохотные кристаллики соли, дорожная пыль, аэрозольные примеси. Когда в окно проникают солнечные лучи, их можно увидеть невооруженным глазом.

Особенно много твердых частиц в воздухе городов и крупных промышленных центров, где к аэрозолям добавляются выбросы вредных газов, их примесей, образующихся при сжигании топлива.

Концентрация аэрозолей в атмосфере определяет прозрачность воздуха, что сказывается на солнечной радиации, достигающей поверхности Земли. Наиболее крупные аэрозоли — ядра конденсации (от лат.condensatio — уплотнение, сгущение) — способствуют превращению водяного пара в водяные капли.

Значение водяного пара определяется прежде всего тем, что он задерживает длинноволновое тепловое излучение земной поверхности; представляет основное звено больших и малых круговоротов влаги; повышает температуру воздуха при конденсации водяных наров.

Количество водяного пара в атмосфере изменяется во времени и пространстве. Так, концентрация водяного пара у земной поверхности колеблется от 3 % в тропиках до 2-10 (15) % в Антарктиде.

Среднее содержание водяного пара в вертикальном столбе атмосферы в умеренных широтах составляет около 1,6-1,7 см (такую толщину будет иметь слой сконденсированного водяного пара). Сведения относительно водяного пара в различных слоях атмосферы противоречивы. Предполагалось, например, что в диапазоне высот от 20 до 30 км удельная влажность сильно увеличивается с высотой. Однако последующие измерения указывают на большую сухость стратосферы. По-видимому, удельная влажность в стратосфере мало зависит от высоты и составляет 2-4 мг/кг.

Изменчивость содержания водяного пара в тропосфере определяется взаимодействием процессов испарения, конденсации и горизонтального переноса. В результате конденсации водяного пара образуются облака и выпадают атмосферные осадки в виде дождя, града и снега.

Процессы фазовых переходов воды протекают преимущественно в тропосфере, именно поэтому облака в стратосфере (на высотах 20-30 км) и мезосфере (вблизи мезопаузы), получившие название перламутровых и серебристых, наблюдаются сравнительно редко, тогда как тропосферные облака нередко закрывают около 50 % всей земной поверхности.

Количество водяного пара, которое может содержаться в воздухе, зависит от температуры воздуха.

В 1 м 3 воздуха при температуре -20 °С может содержаться не более 1 г воды; при 0 °С — не более 5 г; при +10 °С — не более 9 г; при +30 °С — не более 30 г воды.

Вывод: чем выше температура воздуха, тем больше водяного пара может в нем содержаться.

Воздух может быть насыщенным и не насыщенным водяным паром. Так, если при температуре +30 °С в 1 м 3 воздуха содержится 15 г водяного пара, воздух не насыщен водяным паром; если же 30 г — насыщен.

Абсолютная влажность — это количество водяного пара, содержащегося в 1 м 3 воздуха. Оно выражается в граммах. Например, если говорят «абсолютная влажность равна 15», то это значит, что в 1 м Л содержится 15 г водяного пара.

Относительная влажность воздуха — это отношение (в процентах) фактического содержания водяного пара в 1 м 3 воздуха к тому количеству водяного пара, которое может содержаться в 1 м Л при данной температуре. Например, если по радио во время передачи сводки погоды сообщили, что относительная влажность равна 70 %, это значит, что воздух содержит 70 % того водяного пара, которое он может вместить при данной температуре.

Чем больше относительная влажность воздуха, т. с. чем ближе воздух к состоянию насыщения, тем вероятнее выпадение осадков.

Всегда высокая (до 90 %) относительная влажность воздуха наблюдается в экваториальной зоне, так как там в течение всего года держится высокая температура воздуха и происходит большое испарение с поверхности океанов. Такая же высокая относительная влажность и в полярных районах, но уже потому, что при низких температурах даже небольшое количество водяного пара делает воздух насыщенным или близким к насыщению. В умеренных широтах относительная влажность меняется по сезонам — зимой она выше, летом — ниже.

Особенно низкая относительная влажность воздуха в пустынях: 1 м 1 воздуха там содержит в два-три раза меньше возможного при данной температуре количество водяного пара.

Для измерения относительной влажности пользуются гигрометром (от греч. hygros — влажный и metreco — измеряю).

При охлаждении насыщенный воздух не может удержать в себе прежнего количества водяного пара, он сгущается (конденсируется), превращаясь в капельки тумана. Туман можно наблюдать летом в ясную прохладную ночь.

Облака — это тог же туман, только образуется он не у земной поверхности, а на некоторой высоте. Поднимаясь вверх, воздух охлаждается, и находящийся в нем водяной пар конденсируется. Образовавшиеся мельчайшие капельки воды и составляют облака.

В образовании облаков участвуют и твердые частицы , находящиеся в тропосфере во взвешенном состоянии.

Облака могут иметь различную форму, которая зависит от условий их образования (табл. 14).

Самые низкие и тяжелые облака — слоистые. Они располагаются на высоте 2 км от земной поверхности. На высоте от 2 до8 км можно наблюдать более живописные кучевые облака. Самые высокие и легкие — перистые облака. Они располагаются на высоте от 8 до 18 км над земной поверхностью.

Семейства

Роды облаков

Внешний облик

А. Облака верхнего яруса — выше 6 км

I. Перистые

Нитевидные, волокнистые, белые

II. Перисто-кучевые

Слои и гряды из мелких хлопьев и завитков, белые

III. Перисто-слоистые

Прозрачная белесая вуаль

Б. Облака среднего яруса — выше 2 км

IV. Высококучевые

Пласты и гряды белого и серою цвета

V. Высокослоистые

Ровная пелена молочно-серого цвета

В. Облака нижнего яруса — до 2 км

VI. Слоисто-дождевые

Сплошной бесформенный серый слой

VII. Слоисто-кучевые

Непросвечиваемые слои и гряды серого цвета

VIII. Слоистые

Непросвечиваемая пелена серого цвета

Г. Облака вертикального развития — от нижнего до верхнего яруса

IX. Кучевые

Клубы и купола ярко-бе- лого цвета, при ветре с разорванными краями

X. Кучево-дождевые

Мощные кучевообразные массы темно-свинцового цвета

Охрана атмосферы

Главным источником являются промышленные предприятия и автомобили. В больших городах проблема загазованности главных транспортных магистралей стоит очень остро. Именно поэтому во многих крупных городах мира, в том числе и в нашей стране, введен экологический контроль токсичности выхлопных газов автомобилей. Поданным специалистов, задымленность и запыленность воздуха может наполовину сократить поступление солнечной энергии к земной поверхности, что приведет к изменению природных условий.

АТМОСФЕРА Земли (греческий atmos пар + sphaira шар) - газовая оболочка, окружающая Землю. Масса атмосферы составляет около 5,15·10 15 Биологическое значение атмосферы огромно. В атмосфере осуществляется массо-энергообмен между живой и неживой природой, между растительным и животным миром. Азот атмосферы усваивают микроорганизмы; из углекислого газа и воды за счет энергии Солнца растения синтезируют органические вещества и выделяют кислород. Наличие атмосферы обеспечивает сохранение на Земле воды, также являющейся важным условием существования живых организмов.

Исследования, проведенные с помощью высотных геофизических ракет, искусственных спутников Земли и межпланетных автоматических станций, установили, что земная атмосфера простирается на тысячи километров. Границы атмосферы непостоянны, на них влияют гравитационное поле Луны и давление потока солнечных лучей. Над экватором в области земной тени атмосфера достигает высот около 10 000км, а над полюсами границы ее удалены от поверхности земли на 3000 км. Основная масса атмосферы (80-90%) находится в пределах высот до 12-16 км, что объясняется экспоненциальным (нелинейным) характером уменьшения плотности (разрежением) ее газовой среды по мере увеличения высоты над уровнем моря.

Существование большинства живых организмов в естественных условиях возможно в еще более узких границах атмосферы, до 7-8 км, где имеет место необходимое для активного протекания биологических процессов сочетание таких атмосферных факторов, как газовый состав, температура, давление, влажность. Гигиеническое значение имеют также движение и ионизация воздуха, атмосферные осадки, электрическое состояние атмосферы.

Газовый состав

Атмосфера представляет собой физическую смесь газов (табл. 1), преимущественно азота и кислорода (78,08 и 20,95 об. %). Соотношение газов атмосферы практически одинаково до высот 80-100 км. Постоянство основной части газового состава атмосеры обусловливается относительным уравновешиванием процессов газообмена между живой и неживой природой и непрерывным перемешиванием масс воздуха в горизонтальном и вертикальном направлениях.

Таблица 1. ХАРАКТЕРИСТИКА ХИМИЧЕСКОГО СОСТАВА СУХОГО АТМОСФЕРНОГО ВОЗДУХА У ЗЕМНОЙ ПОВЕРХНОСТИ

Состав газовый

Объемная концентрация, %

Кислород

Углекислый газ

Закись азота

Двуокись серы

От 0 до 0,0001

От 0 до 0,000007 летом, от 0 до 0,000002 зимой

Двуокись азота

От 0 до 0,000002

Окись углерода

На высотах более 100 км происходит изменение процентного содержания отдельных газов, связанное с их диффузным расслоением под влиянием гравитации и температуры. Кроме того, под действием коротковолновой части ультрафиолетовых и рентгеновских лучей на высоте 100 км и более происходит диссоциация молекул кислорода, азота и углекислого газа на атомы. На больших высотах эти газы находятся в виде сильно ионизированных атомов.

Содержание углекислого газа в атмосфере различных районов Земли менее постоянно, что связано отчасти с неравномерным рассредоточением крупных промышленных предприятий, загрязняющих воздух, а также неравномерностью распределения на Земле растительности, водных бассейнов, поглощающих углекислый газ. Также изменчиво в атмосфере и содержание аэрозолей (см.) - взвешенных в воздухе частиц размером от нескольких миллимикрон до нескольких десятков микрон, - образующихся в результате вулканических извержений, мощных искусственных взрывов, загрязнений индустриальными предприятиями. Концентрация аэрозолей быстро убывает с высотой.

Самая непостоянная и важная из переменных компонентов атмосферы - водяной пар, концентрация которого у земной поверхности может колебаться от 3% (в тропиках) до 2×10 -10 % (в Антарктиде). Чем выше температура воздуха, тем больше влаги при прочих равных условиях может находиться в атмосфере и наоборот. Основная масса паров воды сосредоточена в атмосфере до высот 8-10 км. Содержание водяного пара в атмосфере зависит от сочетанного влияния процессов испарения, конденсации и горизонтального переноса. На больших высотах в связи с понижением температуры и конденсации паров воздух практически сухой.

Атмосфера Земли, помимо молекулярного и атомарного кислорода, содержит в незначительном количестве и озон (см.), концентрация которого весьма непостоянна и меняется в зависимости от высоты и времени года. Больше всего озона содержится в области полюсов к концу полярной ночи на высоте 15-30 км с резким убыванием вверх и вниз. Озон возникает в результате фотохимического действия на кислород ультрафиолетовой солнечной радиации преимущественно на высотах 20-50 км. Двухатомные молекулы кислорода частично распадаются при этом на атомы и, присоединяясь к неразложенным молекулам, образуют трехатомные молекулы озона (полимерная, аллотропная форма кислорода).

Наличие в атмосфере группы так называемых инертных газов (гелия, неона, аргона, криптона, ксенона) связано с непрерывным протеканием процессов естественного радиоактивного распада.

Биологическое значение газов атмосферы очень велико. Для большинства многоклеточных организмов определенное содержание молекулярного кислорода в газовой или водной среде является непременным фактором их существования, обусловливающим при дыхании высвобождение энергии из органических веществ, созданных первоначально в ходе фотосинтеза. Не случайно, что верхние границы биосферы (часть поверхности земного шара и нижняя часть атмосферы, где существует жизнь) определяются наличием достаточного количества кислорода. В процессе эволюции организмы приспособились к определенному уровню содержания кислорода в атмосфере; изменение содержания кислорода в сторону уменьшения или увеличения оказывает неблагоприятный эффект (см. Высотная болезнь , Гипероксия , Гипоксия).

Выраженным биологическим действием обладает и озон-аллотропная форма кислорода. При концентрациях, не превышающих 0,0001 мг/л, что характерно для курортных местностей и морских побережий, озон оказывает целебное действие - стимулирует дыхание и сердечно-сосудистую деятельность, улучшает сон. С увеличением концентрации озона проявляется его токсическое действие: раздражение глаз, некротическое воспаление слизистых оболочек дыхательных путей, обострение легочных заболеваний, вегетативные неврозы. Вступая в соединение с гемоглобином, озон образует метгемоглобин, что приводит к нарушению дыхательной функции крови; затрудняется перенос кислорода из легких к тканям, развиваются явления удушья. Сходное неблагоприятное влияние на организм оказывает и атомарный кислород. Озон играет значительную роль в создании термических режимов различных слоев атмосферы вследствие чрезвычайно сильного поглощения солнечной радиации и земного излучения. Наиболее интенсивно озон поглощает ультрафиолетовые и инфракрасные лучи. Солнечные лучи с длиной волны меньше 300 нм почти полностью поглощаются атмосферным озоном. Таким образом, Земля окружена своеобразным «озоновым экраном», защищающим многие организмы от губительного действия ультрафиолетового излучения Солнца, Азот атмосферного воздуха имеет важное биологическое значение прежде всего как источник так наз. фиксированного азота - ресурса растительной (а в конечном счете и животной) пищи. Физиологическая значимость азота определяется его участием в создании необходимого для жизненных процессов уровня атмосферного давления. При определенных условиях изменения давления азот играет основную роль в развитии ряда нарушений в организме (см. Декомпрессионная болезнь). Предположения о том, что азот ослабляет токсическое действие на организм кислорода и усваивается из атмосферы не только микроорганизмами, но и высшими животными, являются спорными.

Инертные газы атмосферы (ксенон, криптон, аргон, неон, гелий) при создаваемом ими в обычных условиях парциальном давлении могут быть отнесены к числу биологически индифферентных газов. При значительном повышении парциального давления эти газы оказывают наркотическое действие.

Наличие углекислого газа в атмосфере обеспечивает накопление солнечной энергии в биосфере за счет фотосинтеза сложных соединений углерода, которые в процессе жизни непрерывно возникают, изменяются и разлагаются. Эта динамическая система поддерживается в результате деятельности водорослей и наземных растений, улавливающих энергию солнечного света и использующих ее для превращения углекислого газа (см.) и воды в разнообразные органические соединения с выделением кислорода. Протяженность биосферы вверх ограничена частично и тем, что на высотах более 6-7 км хлорофиллсодержащие растения не могут жить из-за низкого парциального давления углекислого газа. Углекислый газ является весьма активным и в физиологическом отношении, так как играет важную роль в регуляции обменных процессов, деятельности центральной нервной системы, дыхания, кровообращения, кислородного режима организма. Однако эта регуляция опосредована влиянием углекислого газа, образуемого самим организмом, а не поступающего из атмосферы. В тканях и крови животных и человека парциальное давление углекислого газа примерно в 200 раз превышает величину его давления в атмосфере. И лишь при значительном увеличении содержания углекислого газа в атмосфере (более 0,6-1%) наблюдаются нарушения в организме, обозначаемые термином гиперкапния (см.). Полное устранение углекислого газа из вдыхаемого воздуха не может непосредственно оказать неблагоприятного влияния на организм человека и животных.

Углекислый газ играет определенную роль в поглощении длинноволнового излучения и поддержании «оранжерейного эффекта», повышающего температуру у поверхности Земли. Изучается также проблема влияния на термические и другие режимы атмосферы углекислого газа, поступающего в громадных количествах в воздух как отход промышленности.

Водяные пары атмосферы (влажность воздуха) также оказывают влияние на организм человека, в частности на теплообмен с окружающей средой.

В результате конденсации водяного пара в атмосфере образуются облака и выпадают атмосферные осадки (дождь, град, снег). Водяные пары, рассеивая солнечное излучение, участвуют в создании теплового режима Земли и нижних слоев атмосферы, в формировании метеорологических условий.

Атмосферное давление

Атмосферное давление (барометрическое) - давление, оказываемое атмосферой под влиянием гравитации на поверхность Земли. Величина этого давления в каждой точке атмосферы равна весу вышележащего столба воздуха с единичным основанием, простирающегося над местом измерения до границ атмосферы. Измеряют атмосферное давление барометром (см.) и выражают в миллибарах, в ньютонах на квадратный метр или высотой столба ртути в барометре в миллиметрах, приведенной к 0° и нормальной величине ускорения силы тяжести. В табл. 2 приведены наиболее употребительные единицы измерения атмосферного давления.

Изменение давления происходит вследствие неравномерного нагревания масс воздуха, расположенных над сушей и водой в различных географических широтах. При повышении температуры плотность воздуха и создаваемое им давление уменьшаются. Огромное скопление быстродвижущегося воздуха с пониженным давлением (с уменьшением давления от периферии к центру вихря) называют циклоном, с повышенным давлением (с повышением давления к центру вихря) - антициклоном. Для прогноза погоды важны непериодические изменения атмосферного давления, происходящие в движущихся обширных массах и связанные с возникновением, развитием и разрушением антициклонов и циклонов. Особенно большие изменения атмосферного давления связаны с быстрым перемещением тропических циклонов. При этом атмосферное давление может изменяться на 30-40 мбар за сутки.

Падение атмосферного давления в миллибарах на расстоянии, равном 100 км, называется горизонтальным барометрическим градиентом. Обычно величины горизонтального барометрического градиента составляют 1-3 мбар, но в тропических циклонах иногда возрастают до десятков миллибар на 100 км.

С подъемом на высоту атмосферное давление понижается в логарифмической зависимости: вначале очень резко, а затем все менее заметно (рис. 1). Поэтому кривая изменения барометрического давления носит экспоненциальный характер.

Убывание давления на единицу расстояния по вертикали называется вертикальным барометрическим градиентом. Часто пользуются обратной ему величиной - барометрической ступенью.

Так как барометрическое давление есть сумма парциальных давлений газов, образующих воздух, то очевидно, что с подъемом на высоту наряду с уменьшением общего давления атмосферы снижается и парциальное давление газов, составляющих воздух. Величина парциального давления любого газа в атмосфере вычисляется по формуле

где Р х - парциальное давление газа, Ρ z - атмосферное давление на высоте Ζ, Х% - процентное содержание газа, парциальное давление которого следует определить.

Рис. 1. Изменение барометрического давления в зависимости от высоты над уровнем моря.

Рис. 2. Изменение парциального давления кислорода в альвеолярном воздухе и насыщения артериальной крови кислородом в зависимости от изменения высоты при дыхании воздухом и кислородом. Дыхание кислородом начинается с высоты 8,5 км (эксперимент в барокамере).

Рис. 3. Сравнительные кривые средних величин активного сознания у человека в минутах на разных высотах после быстрого подъема при дыхании воздухом (I) я кислородом (II). На высотах более 15 км активное сознание нарушается одинаково при дыхании кислородом и воздухом. На высотах до 15 км дыхание кислородом значительно продлевает период активного сознания (эксперимент в барокамере).

Поскольку процентный состав газов атмосферы относительно постоянен, то для определения парциального давления любого газа требуется лишь знать общее барометрическое давление на данной высоте (рис. 1 и табл. 3).

Таблица 3. ТАБЛИЦА СТАНДАРТНОЙ АТМОСФЕРЫ (ГОСТ 4401-64) 1

Геометрическая высота (м)

Температура

Барометрическое давление

Парциальное давление кислорода (мм рт. ст.)

мм рт. ст.

1 Дана в сокращенном виде и дополнена графой «Парциальное давление кислорода» .

При определении парциального давления газа во влажном воздухе нужно вычесть из величины барометрического давления давление (упругость) насыщенных паров.

Формула для определения парциального давления газа во влажном воздухе будет несколько иной, чем для сухого воздуха:

где рH 2 O - упругость водяных паров. При t° 37° упругость насыщенного водяного пара равна 47 мм рт. ст. Эта величина используется при вычислении парциальных давлений газов альвеолярного воздуха в наземных и высотных условиях.

Влияние на организм повышенного и пониженного давления. Изменения барометрического давления в сторону повышения или понижения оказывают разнообразное действие на организм животных и человека. Влияние повышенного давления связано с механическим и проникающим физико-химическим действием газовой среды (так наз. компрессионный и проникающий эффекты).

Компрессионный эффект проявляется: общим объемным сжатием, обусловленным равномерным повышением сил механического давления на органы и ткани; механонаркозом, обусловленным равномерной объемной компрессией при очень высоком барометрическом давлении; местным неравномерным давлением на ткани, которые ограничивают газосодержащие полости при нарушенной связи наружного воздуха с воздухом, находящимся в полости, например, среднего уха, придаточных полостях носа (см. Баротравма); увеличением плотности газа в системе внешнего дыхания, что вызывает возрастание сопротивления дыхательным движениям, особенно при форсированном дыхании (физическая нагрузка, гиперкапния).

Проникающий эффект может привести к токсическому действию кислорода и индифферентных газов, повышение содержания которых в крови и тканях вызывает наркотическую реакцию, первые признаки к-рой при использовании азото-кислородной смеси у человека возникают при давлении 4-8 ата. Увеличение парциального давления кислорода вначале снижает уровень функционирования сердечно-сосудистой и дыхательной систем вследствие выключения регулирующего влияния физиологической гипоксемии. При увеличении парциального давления кислорода в легких более 0,8-1 ата проявляется его токсическое действие (поражение легочной ткани, судороги, коллапс).

Проникающий и компрессионный эффекты повышенного давления газовой среды используются в клинической медицине при лечении различных болезней с общим и местным нарушением кислородного обеспечения (см. Баротерапия , Кислородная терапия).

Понижение давления оказывает на организм еще более выраженное действие. В условиях крайне разреженной атмосферы основным патогенетическим фактором, приводящим за несколько секунд к потере сознания, а за 4-5 мин.- к гибели, является уменьшение парциального давления кислорода во вдыхаемом воздухе, а затем в альвеолярном воздухе, крови и тканях (рис. 2 и 3). Умеренная гипоксия вызывает развитие приспособительных реакций системы дыхания и гемодинамики, направленных на поддержание кислородного снабжения в первую очередь жизненно важных органов (мозга, сердца). При выраженном недостатке кислорода угнетаются окислительные процессы (за счет дыхательных ферментов), нарушаются аэробные процессы выработки энергии в митохондриях. Это приводит вначале к расстройству функций жизненно важных органов, а затем к необратимым структурным повреждениям и гибели организма. Развитие приспособительных и патологических реакций, изменение функционального состояния организма и работоспособности человека при понижении атмосферного давления определяется степенью и скоростью уменьшения парциального давления кислорода во вдыхаемом воздухе, длительностью пребывания на высоте, интенсивностью выполняемой работы, исходным состоянием организма (см. Высотная болезнь).

Понижение давления на высотах (даже при исключении недостатка кислорода) вызывает в организме серьезные нарушения, объединяемые понятием «декомпрессионные расстройства», к которым относятся: высотный метеоризм, баротит и баросинусит, высотная декомпрессионная болезнь и высотная тканевая эмфизема.

Высотный метеоризм развивается вследствие расширения газов в желудочно-кишечном тракте при уменьшении барометрического давления на брюшную стенку при подъеме на высоты от 7-12 км и более. Определенное значение имеет и выход газов, растворенных в кишечном содержимом.

Расширение газов приводит к растяжению желудка и кишечника, поднятию диафрагмы, изменению положения сердца, раздражению рецепторного аппарата этих органов и возникновению патологических рефлексов, нарушающих дыхание и кровообращение. Нередко возникают резкие боли в области живота. Сходные явления иногда возникают и у водолазов при подъеме с глубины на поверхность.

Механизм развития баротита и баросинусита, проявляющихся чувством заложенности и боли соответственно в среднем ухе или придаточных полостях носа, подобен развитию высотного метеоризма.

Снижение давления, помимо расширения газов, содержащихся в полостях тела, обусловливает также и выход газов из жидкостей и тканей, в которых они были растворены в условиях давления на уровне моря или на глубине, и образование пузырьков газа в организме.

Этот процесс выхода растворенных газов (прежде всего азота) вызывает развитие декомпрессионной болезни (см.).

Рис. 4. Зависимость температуры кипения воды от высоты над уровнем моря и барометрического давления. Цифры давления расположены под соответствующими цифрами высоты.

При уменьшении атмосферного давления понижается температура кипения жидкостей (рис. 4). На высоте более 19 км, где барометрическое давление равно (или меньше) упругости насыщенных паров при температуре тела (37°), может произойти «закипание» межтканевой и межклеточной жидкости организма, в результате чего в крупных венах, в полости плевры, желудка, перикарда, в рыхлой жировой клетчатке, то есть в участках с низким гидростатическим и внутритканевым давлением, образуются пузыри водяного пара, развивается высотная тканевая эмфизема. Высотное «кипение» не затрагивает клеточные структуры, локализуясь только в межклеточной жидкости и крови.

Массивные пузыри пара могут блокировать работу сердца и циркуляцию крови и нарушать работу жизненно важных систем и органов. Это является серьезным осложнением острого кислородного голодания, развивающегося на больших высотах. Профилактика высотной тканевой эмфиземы может быть обеспечена созданием внешнего противодавления на тело высотным снаряжением.

Сам процесс понижения барометрического давления (декомпрессия) при определенных параметрах может стать повреждающим фактором. В зависимости от скорости декомпрессию разделяют на плавную (медленную) и взрывную. Последняя протекает за время менее 1 секунды и сопровождается сильным хлопком (как при выстреле), образованием тумана (конденсация паров воды из-за охлаждения расширяющегося воздуха). Обычно взрывная декомпрессия происходит на высотах при разрушении остекления герметичной кабины или скафандра с избыточным давлением.

При взрывной декомпрессии прежде всего страдают легкие. Быстрое нарастание внутрилегочного избыточного давления (более чем на 80 мм рт. ст.) приводит к значительному растяжению легочной ткани, что может вызвать разрыв легких (при их расширении в 2,3 раза). Взрывная декомпрессия может вызвать повреждение и желудочно-кишечного тракта. Величина возникающего избыточного давления в легких будет во многом зависеть от скорости истечения из них воздуха в процессе декомпрессии и объема воздуха в легких. Особенно опасно, если верхние дыхательные пути в момент декомпрессии окажутся закрытыми (при глотании, задержке дыхания) или декомпрессия совпадет с фазой глубокого вдоха, когда легкие наполняются большим количеством воздуха.

Температура атмосферы

Температура атмосферы с увеличением высоты вначале понижается (в среднем от 15° у земли до -56,5° на высоте 11-18 км). Вертикальный температурный градиент в этой зоне атмосферы составляет около 0,6° на каждые 100 м; он изменяется в течение суток и года (табл. 4).

Таблица 4. ИЗМЕНЕНИЯ ВЕРТИКАЛЬНОГО ТЕМПЕРАТУРНОГО ГРАДИЕНТА НАД СРЕДНЕЙ ПОЛОСОЙ ТЕРРИТОРИИ СССР

Рис. 5. Изменение температуры атмосферы на различных высотах. Границы сфер обозначены пунктиром.

На высотах 11 - 25 км температура становится постоянной и составляет -56,5°; затем температура начинает повышаться, достигая на высоте 40 км 30-40°, на высоте 50-60 км 70° (рис. 5), что связано с интенсивным поглощением озоном солнечной радиации. С высоты 60- 80 км температура воздуха вновь несколько снижается (до 60°), а затем прогрессивно повышается и составляет на высоте 120 км 270°, на 220 км 800°, на высоте 300 км 1500°, а

на границе с космическим пространством - больше 3000°. Следует заметить, что вследствие большой разреженности и малой плотности газов на этих высотах их теплоемкость и способность к нагреванию более холодных тел очень незначительна. В этих условиях передача тепла от одного тела к другому происходит только посредством лучеиспускания. Все рассматриваемые изменения температуры в атмосфере связаны с поглощением воздушными массами тепловой энергии Солнца - прямой и отраженной.

В нижней части атмосферы у поверхности Земли распределение температуры зависит от притока солнечной радиации и поэтому имеет в основном широтный характер, то есть линии равной температуры - изотермы - параллельны широтам. Так как атмосфера в нижних слоях нагревается от земной поверхности, то на горизонтальное изменение температуры сильно влияет распределение материков и океанов, термические свойства которых различны. Обычно в справочниках указывается температура, измеренная при сетевых метеорологических наблюдениях термометром, установленным на высоте 2 м над поверхностью почвы. Наиболее высокие температуры (до 58е) наблюдаются в пустынях Ирана, а в СССР - на юге Туркменистана (до 50°), наиболее низкие (до -87°) в Антарктиде, а в СССР - в районах Верхоянска и Оймякона (до -68°). Зимой вертикальный температурный градиент в отдельных случаях вместо 0,6° может превышать 1° на 100 м или даже принимать отрицательное значение. Днем в теплое время года он может быть равен многим десяткам градусов на 100 м. Различают также горизонтальный градиент температуры, который обычно относят к расстоянию 100 км по нормали к изотерме. Величина горизонтального градиента температуры - десятые доли градуса на 100 км, а во фронтальных зонах он может превышать 10° на 100 м.

Организм человека способен поддерживать тепловой гомеостаз (см.) в довольно узких пределах колебаний температуры наружного воздуха - от 15 до 45°. Существенные различия температуры атмосферы у Земли и на высотах требуют применения специальных защитных технических средств для обеспечения теплового баланса между организмом человека и внешней средой в высотных и космических полетах.

Характерные изменения параметров атмосферы (температуры, давления, химического состава, электрического состояния) позволяют условно разделить атмосферу на зоны, или слои. Тропосфера - ближайший слой к Земле, верхняя граница которого простирается на экваторе до 17-18 км, на полюсах - до 7-8 км, в средних широтах - до 12-16 км. Для тропосферы характерно экспоненциальное падение давления, наличие постоянного вертикального температурного градиента, горизонтальные и вертикальные перемещения воздушных масс, значительные изменения влажности воздуха. В тропосфере находится основная масса атмосферы, а также значительная часть биосферы; здесь возникают все основные виды облаков, формируются воздушные массы и фронты, развиваются циклоны и антициклоны. В тропосфере из-за отражения снежным покровом Земли солнечных лучей и охлаждения приземных слоев воздуха имеет место так называемая инверсия, то есть возрастание температуры в атмосфере снизу вверх вместо обычного убывания.

В теплое время года в тропосфере происходит постоянное турбулентное (беспорядочное, хаотичное) перемешивание воздушных масс и перенос тепла потоками воздуха (конвекция). Конвекция уничтожает туманы и уменьшает запыленность нижнего слоя атмосферы.

Вторым слоем атмосферы является стратосфера .

Она начинается от тропосферы узкой зоной (1-3 км) с постоянной температурой (тропопауза) и простирается до высот около 80 км. Особенностью стратосферы является прогрессирующая разреженность воздуха, исключительно высокая интенсивность ультрафиолетового излучения, отсутствие водяных паров, наличие большого количества озона и постепенное повышение температуры. Высокое содержание озона обусловливает ряд оптических явлений (миражи), вызывает отражение звуков и оказывает существенное влияние на интенсивность и спектральный состав электромагнитных излучений. В стратосфере происходит постоянное перемешивание воздуха, поэтому состав его аналогичен воздуху тропосферы, хотя плотность его у верхних границ стратосферы крайне мала. Преобладающие ветры в стратосфере - западные, а в верхней зоне наблюдается переход к восточным ветрам.

Третьим слоем атмосферы является ионосфера , которая начинается от стратосферы и простирается до высот 600-800 км.

Отличительные признаки ионосферы - крайняя разреженность газовой среды, высокая концентрация молекулярных и атомарных ионов и свободных электронов, а также высокая температура. Ионосфера оказывает влияние на распространение радиоволн, обусловливая их преломление, отражение и поглощение.

Основным источником ионизации высоких слоев атмосферы является ультрафиолетовое излучение Солнца. При этом из атомов газов выбиваются электроны, атомы превращаются в положительные ионы, а выбитые электроны остаются свободными или захватываются нейтральными молекулами с образованием отрицательных ионов. На ионизацию ионосферы оказывают влияние метеоры, корпускулярное, рентгеновское и гамма-излучение Солнца, а также сейсмические процессы Земли (землетрясения, вулканические извержения, мощные взрывы), которые генерируют акустические волны в ионосфере, усиливающие амплитуду и скорость колебаний частиц атмосферы и способствующие ионизации газовых молекул и атомов (см. Аэроионизация).

Электрическая проводимость в ионосфере, связанная с высокой концентрацией ионов и электронов, очень велика. Повышенная электропроводимость ионосферы играет важную роль в отражении радиоволн и возникновении полярных сияний.

Ионосфера - это область полетов искусственных спутников Земли и межконтинентальных баллистических ракет. В настоящее время космическая медицина изучает возможные влияния на организм человека условий полета в этой части атмосферы.

Четвертый, внешний слой атмосферы - экзосфера . Отсюда атмосферные газы рассеиваются в мировое пространство за счет диссипации (преодоления молекулами сил земного тяготения). Затем происходит постепенный переход от атмосферы к межпланетному космическому пространству. От последнего экзосфера отличается наличием большого количества свободных электронов, образующих 2-й и 3-й радиационные пояса Земли.

Разделение атмосферы на 4 слоя весьма условно. Так, по электрическим параметрам всю толщу атмосферы делят на 2 слоя: нейтросферу, в которой преобладают нейтральные частицы, и ионосферу. По температуре различают тропосферу, стратосферу, мезосферу и термосферу, разделенные соответственно тропо-, страто- и мезопаузами. Слой атмосферы, расположенный между 15 и 70 км и характеризующийся высоким содержанием озона, называют озоносферой.

Для практических целей удобно пользоваться Международной стандартной атмосферой (MCA), для к-рой принимают следующие условия: давление на уровне моря при t° 15° равно 1013 мбар (1,013 X 10 5 нм 2 , или 760 мм рт. ст.); температура уменьшается на 6,5° на 1 км до уровня 11 км (условная стратосфера), а затем остается постоянной. В СССР принята стандартная атмосфера ГОСТ 4401 - 64 (табл. 3).

Осадки. Поскольку основная масса водяного пара атмосферы сосредоточена в тропосфере, то и процессы фазовых переходов воды, обусловливающие осадки, протекают преимущественно в тропосфере. Тропосферные облака обычно закрывают около 50% всей земной поверхности, тогда как облака в стратосфере (на высотах 20-30 км) и вблизи мезопаузы, получившие название соответственно перламутровых и серебристых, наблюдаются сравнительно редко. В результате конденсации водяного пара в тропосфере образуются облака и выпадают осадки.

По характеру выпадения осадки разделяются на 3 типа: обложные, ливневые, моросящие. Количество осадков определяется толщиной слоя выпавшей воды в миллиметрах; измерение осадков производят дождемерами и осадкомерами. Интенсивность осадков выражается в миллиметрах в 1 минуту.

Распределение осадков в отдельные сезоны и дни, а также по территории крайне неравномерно, что обусловлено циркуляцией атмосферы и влиянием поверхности Земли. Так, на Гавайских островах в среднем за год выпадает 12 000мм, а в наиболее сухих областях Перу и Сахары осадки не превышают 250 мм, а иногда не выпадают по нескольку лет. В годовой динамике выпадения осадков различают следующие типы: экваториальный - с максимумом выпадения после весеннего и осеннего равноденствия; тропический - с максимумом осадков летом; муссонный - с очень резко выраженным пиком летом и сухой зимой; субтропический - с максимумом осадков зимой и сухим летом; континентальный умеренных широт - с максимумом выпадения осадков летом; морской умеренных широт - с максимумом осадков зимой.

Весь атмосферно-физический комплекс климатометеорологических факторов, составляющий погоду, широко используется для укрепления здоровья, закаливания и в лечебных целях (см. Климатотерапия). Наряду с этим установлено, что резкие колебания этих атмосферных факторов могут отрицательно влиять на физиологические процессы в организме, вызывая развитие различных патологических состояний и обострение болезней, получивших название метеотропных реакций (см. Климатопатология). Особое значение в этом отношении имеют частые длительные возмущения атмосферы и резкие скачкообразные колебания метеофакторов.

Метеотропные реакции наблюдаются чаще у людей, страдающих заболеваниями сердечно-сосудистой системы, полиартритами, бронхиальной астмой, язвенной болезнью, заболеваниями кожи.

Библиография: Белинский В. А. и Побияхо В. А. Аэрология, Л., 1962, библиогр.; Биосфера и ее ресурсы, под ред. В. А. Ковды, М., 1971; Данилов А. Д. Химия ионосферы, Л., 1967; Колобков Н. В. Атмосфера и ее жизнь, М., 1968; Калитин H.H. Основы физики атмосферы в применении к медицине, Л., 1935; Матвеев Л. Т. Основы общей метеорологии, Физика атмосферы, Л., 1965, библиогр.; Минх А. А. Ионизация воздуха и ее гигиеническое значение, М., 1963, библиогр.; он же, Методы гигиенических исследований, М., 1971, библиогр.; Тверской П. Н. Курс метеорологии, Л., 1962; Уманский С. П. Человек в космосе, М., 1970; Хвостиков И. А. Высокие слои атмосферы, Л., 1964; X р г и а н A. X. Физика атмосферы, Л., 1969, библиогр.; Хромов С. П. Метеорология и климатология для географических факультетов, Л., 1968.

Влияние на организм повышенного и пониженного давления - Армстронг Г. Авиационная медицина, пер. с англ., М., 1954, библиогр.; Зальцман Г.Л. Физиологические основы пребывания человека в условиях повышенного давления газов среды, Л., 1961, библиогр.; Иванов Д. И. и Хромушкин А. И. Системы жизнеобеспечения человека при высотных и космических полетах, М., 1968, библиогр.; Исаков П. К. и др. Теория и практика авиационной медицины, М., 1971, библиогр.; Коваленко Е. А. и Черняков И. Н. Кислород тканей при экстремальных факторах полета, М., 1972, библиогр.; Майлс С. Подводная медицина, пер. с англ., М., 1971, библиогр.; Busby D. Е. Space clinical medicine, Dordrecht, 1968.

И. H. Черняков, M. Т. Дмитриев, С. И. Непомнящий.