Использование свойств корней при преобразовании иррациональных выражений, примеры, решения. Использование свойств корней при преобразовании иррациональных выражений, примеры, решения V. Историческая справка

Использование свойств корней при преобразовании иррациональных выражений, примеры, решения. Использование свойств корней при преобразовании иррациональных выражений, примеры, решения V. Историческая справка

Муниципальное казенное образовательное учреждение

«Новоникольская средняя общеобразовательная школа»

Быковского муниципального района Волгоградской области

Урок алгебры в 8 классе

Выполнила : учитель математики

Новоникольское – 2015

Урок алгебры в 8 классе

по теме «Преобразование выражений, содержащих квадратные корни»

Цели урока:

    повторить определение арифметического квадратного корня, свойства арифметического квадратного корня;

    закрепить навыки и умения решения примеров на тождественные преобразования выражений, содержащих арифметические квадратные корни;

    научить освобождаться от иррациональности в знаменателе дроби;

    воспитывать навыки самоконтроля и взаимоконтроля, интерес к предмету.

Оборудование : мультимедийный проектор, интерактивная доска, оценочные листы, карточки с тестом, карточки с домашним заданием.

Ход урока:

I . Организационный момент

Сегодня на уроке мы с вами продолжим преобразование выражений, содержащих квадратные корни. Подвести итоги сегодняшнего урока поможет оценочный лист. Подпишите свои листы и ответьте на первый вопрос «Настроение в начале урока», выбрав один из смайликов.

В математике есть нечто,

вызывающее человеческий восторг.
Ф. Хаусдорф

II . Устная работа

1) Фронтальный опрос.

    Дайте определение арифметического квадратного корня. (Арифметическим квадратным корнем из числа а называется неотрицательное число, квадрат которого равен а ).

    Перечислите свойства арифметического квадратного корня. (Арифметический квадратный корень из произведения неотрицательных множителей равен произведению корней из этих множителей. Арифметический квадратный корень из дроби, числитель которой неотрицателен, а знаменатель положителен, равен корню из числителя, делённому на корень из знаменателя ).

    Чему равно значение арифметического квадратного корня из х 2 ? (|х| ).

    Чему равно значение арифметического квадратного корня из х 2 , если х≥0? хх. –х ).

2) Устный счёт: Ну-ка в сторону карандаши!

Ни костяшек. Ни ручек. Ни мела.

"Устный счёт!" Мы творим это дело

Только силой ума и души.

Цифры сходятся где-то во тьме,

И глаза начинают светиться,

И кругом только умные лица.

Потому что считаем в уме!

Вычислите устно:

1. Вынесите множитель из-под знака корня:

2. Внесите множитель под знак корня:

3. Возведите в квадрат:

4. Приведите подобные слагаемые:

III . Диктант:

Вариант-1

Вариант- 2

Ответы:

Ответы:

IV .ФИЗКУЛЬТМИНУТКА

V . Историческая справка

Radix - имеет два значения: сторона и корень. Греческие математики вместо «извлечь корень» говорили «найти сторону квадрата по его данной величине (площади)»

Начиная с XIII века, итальянские и другие европейские математики обозначали корень латинским словом Radix или сокращенно R (отсюда произошёл термин «радикал»).

Немецкие математики XV в. для обозначения квадратного корня пользовались

точкой ·5

Позднее вместо точки стали ставить ромбик ¨5

Затем Ú 5 . Затем знак Ú и черту стали соединять.

VI этап. Работа над новым материалом.

Если знаменатель алгебраической дроби содержит знак квадратного корня, то обычно говорят, что в знаменателе содержится иррациональность.

Ставится проблема: « Какое выражение проще вычислить: или ? Почему? (Потому, что делить на рациональное число проще, чем на иррациональное.)

Сегодня на уроке мы и будем изучать тему

« Освобождение от иррациональности в знаменателе дроби». Попробуем освободиться от иррациональности в знаменателе в следующих примерах:

а); б) ; в); г).

На какое выражение нужно умножить знаменатель дроби, чтобы корни «исчезли»? А для того чтобы дробь не изменилась, что нужно сделать? Получаем следующую запись решения.

г)=

Сделаем вывод.

Преобразование, при котором в знаменателе дроби исчезают корни, называют освобождением от иррациональности в знаменателе. Мы увидели два основных приема освобождения от иррациональности в знаменателе:

VII . Закрепление темы : Учебник. Стр.98 № 431(а,б,ж,з), №433(а,б,в)

Освободитесь от иррациональности в знаменателе дроби:

а) ; б) в); г) .

VII I . Тест (работа в парах )

Английский философ Герберт Спенсер говорил: «Дороги не те знания, которые откладываются в мозгу, как жир, дороги те, которые превращаются в умственные мышцы».

На этом этапе урока необходимо применить свои знания к решению упражнений в ходе выполнения теста. (тест прилагается )

Самопроверка:

Код правильных ответов: I вариант – 12312 , II вариант - 32132.

Домашнее задание: №431(з,и), №432, №433(г,д,е)

IX . Итог урока:

Заполните до конца оценочный лист. Оценки за урок.

Закончить урок я хочу стихотворением великого математика Софьи Ковалевской.

Небо покроется черною мглой,

В этом стихотворении выражено стремление к знаниям, умение преодолевать все преграды, которые встречаются на пути. А как мы сегодня с вами преодолевали преграды? Чем мы занимались на уроке?

- Сегодня мы повторили определение и свойства арифметического квадратного корня; вынесение множителя за знак корня, внесение множителя под знак корня, формулы сокращённого умножения; ознакомились и закрепили некоторые способы преобразования выражений, содержащих квадратные корни. Расширили свой кругозор и узнали, кто впервые ввёл современный знак корня во всеобщее употребление.

Все работали плодотворно, активно и коллективно в течении урока.

Урок окончен. Всем спасибо за урок!

ЛИСТ-ОПРОСНИК

Ф.И. ученика____________________________

1. Настроение в начале урока: а) б) в)

2. Мое восприятие темы урока:

а) усвоил(а) все; б) усвоил(а) почти все; в) усвоил(а) частично, нуждаюсь в помощи.

3.Оценка за диктант:

4. Количество неправильных ответов теста: _________

5. Я работал(а) на уроке:

а) отлично; б) хорошо; в) удовлетворительно; г) неудовлетворительно.

6. Я оцениваю свою работу на ______ (поставьте оценку)

7. Я оцениваю урок на _____ (поставьте оценку)

8. Настроение в конце урока: а) б в)

Тест

I вариант

1. Упростите выражение

1) 2) 3)

2. Раскройте скобки и упростите выражение:

1) 18; 2) 12; 3) 22.

3. Упростите:

1); 2) ; 3) .

4. Освободитесь от иррациональности в знаменателе =

1) ; 2) ; 3) .

1) ; 2) ; 3); 4)

Тест

II вариант

1. Упростите выражение

1); 2) ; 3)

2. Раскройте скобки и упростите

1) 8; 2) 12; 3) 10.

3. Упростите:

4. Освободитесь от иррациональности в знаменателе:

1) ; 2); 3) .

5. Вынесите множитель из-под знака корня:

1) ; 2) ; 3)

  • Чему равен квадратный корень из произведения неотрицательных множителей?.
  • Чему равен квадратный корень из дроби?
  • Чему равно значение арифметического квадратного корня из х 2 ?

  • Ни костяшек, ни ручек, ни мела.

    Ну-ка, в сторону карандаши!

    "Устный счёт!" Мы творим это дело

    Только силой ума и души.

    Цифры сходятся где-то во тьме,

    И глаза начинают светиться,

    И кругом только умные лица.

    Потому что считаем в уме!


    Устный счёт

    Вынесите множитель из-под знака

    корня:

    Немного подумайте


    Устный счёт

    • Внесите множитель под знак корня:
    • Внесите множитель под знак корня:
    • Внесите множитель под знак корня:
    • Внесите множитель под знак корня:

    Немного подумайте


    Устный счёт

    Возведите в квадрат:

    Немного подумайте


    Устный счёт

    Приведите подобные слагаемые:

    Немного подумайте







    III . Диктант:

    Вариант-1

    Вариант- 2

    Ответы:

    Ответы:



    • Radix - имеет два значения: сторона и корень. Греческие математики вместо «извлечь корень» говорили «найти сторону квадрата по его данной величине (площади)»
    • Начиная с XIII века, итальянские и другие европейские математики обозначали корень латинским словом Radix или сокращенно R (отсюда произошёл термин «радикал»)

    Немецкие математики XV в. для обозначения квадратного корня пользовались точкой ·5

    Позднее вместо точки стали ставить ромбик  5

    Затем  5 .

    Затем знак  и черту стали соединять.



    Взаимопроверка

    I вариант

    II вариант

    п.19, стр. 96, пример 3

    431 (з, и), №432, №433 (г, д, е)

    Если в жизни ты хоть на мгновенье

    Истину в сердце своем ощутил,

    Если луч света сквозь мрак и сомненье

    Ярким сияньем твой путь озарил:

    Что бы в решенье твоем неизменном

    Рок ни назначил тебе впереди,

    Память об этом мгновенье священном

    Вечно храни, как святыню в груди.

    Тучи сберутся громадой нестройной,

    Небо покроется черною мглой,

    С ясной решимостью, с верой спокойной

    Бурю ты встреть и померься с грозой.


    Материал этой статьи стоит рассматривать как часть темы преобразование иррациональных выражений . Здесь мы на примерах разберем все тонкости и нюансы (которых немало), возникающие при проведении преобразований на базе свойств корней.

    Навигация по странице.

    Вспомним свойства корней

    Коль скоро мы собрались разбираться с преобразованием выражений с использованием свойств корней, то не помешает вспомнить основные , а еще лучше записать их на бумагу и расположить перед собой.

    Сначала изучаются квадратные корни и следующие их свойства (a , b , a 1 , a 2 , …, a k - действительные числа):

    А позже представление о корне расширяется, вводится определение корня n-ой степени, и рассматриваются такие свойства (a , b , a 1 , a 2 , …, a k - действительные числа, m , n , n 1 , n 2 , ..., n k - натуральные числа):

    Преобразование выражений с числами под знаками корней

    По обыкновению сначала учатся работать с числовыми выражениями, а уже после этого переходят к выражениям с переменными. Так поступим и мы, и сначала разберемся с преобразованием иррациональных выражений, содержащих под знаками корней только числовые выражения, а уже дальше в следующем пункте будем вводить под знаки корней и переменные.

    Как это может быть использовано для преобразования выражений? Очень просто: например, иррациональное выражение мы можем заменить выражением или наоборот. То есть, если в составе преобразовываемого выражения содержится выражение, совпадающее по виду с выражением из левой (правой) части любого из перечисленных свойств корней, то его можно заменить соответствующим выражением из правой (левой) части. В этом и состоит преобразование выражений с использованием свойств корней.

    Приведем еще несколько примеров.

    Упростим выражение . Числа 3 , 5 и 7 положительные, поэтому мы можем спокойно применять свойства корней. Здесь можно действовать по-разному. Например, корень на базе свойства можно представить как , а корень с использованием свойства при k=3 - как , при таком подходе решение будет иметь такой вид:

    Можно было поступить иначе, заменив на , и дальше на , в этом случае решение выглядело бы так:

    Возможны и другие варианты решения, например, такой:

    Разберем решение еще одного примера. Преобразуем выражение . Взглянув на список свойств корней, выбираем из него нужные нам свойства для решения примера, понятно, что здесь пригодятся два из них и , которые справедливы для любых a . Имеем:

    Как вариант, сначала можно было преобразовать выражения под знаками корней с использованием

    а уже дальше применять свойства корней

    До этого момента мы преобразовывали выражения, которые содержат только квадратные корни. Пришло время поработать с корнями, имеющими другие показатели.

    Пример.

    Преобразуйте иррациональное выражение .

    Решение.

    По свойству первый множитель заданного произведения можно заменить числом −2 :

    Идем дальше. Второй множитель в силу свойства можно представить как , а 81 не помешает заменить четверной степенью тройки, так как в остальных множителях под знаками корней фигурирует число 3 :

    Корень из дроби целесообразно заменить отношением корней вида , которое можно преобразовать и дальше: . Имеем

    Полученное выражение после выполнения действий с двойками примет вид , и остается преобразовать произведение корней.

    Для преобразования произведений корней их обычно приводят к одному показателю, в качестве которого целесообразно брать показателей всех корней. В нашем случае НОК(12, 6, 12)=12 , и к этому показателю придется приводить лишь корень , так как остальные два корня уже имеют такой показатель. Справиться с этой задачей позволяет равенство , которое применяют справа налево. Так . Учитывая этот результат, имеем

    Теперь произведение корней можно заменить корнем произведения и выполнить остальные, уже очевидные, преобразования:

    Оформим краткий вариант решения:

    Ответ:

    .

    Отдельно подчеркнем, что для применения свойств корней необходимо учитывать ограничения, наложенные на числа под знаками корней (a≥0 и т.п.). Их игнорирование может спровоцировать возникновение неверных результатов. Например, мы знаем, что свойство имеет место для неотрицательных a . На его основе мы спокойно можем перейти, к примеру, от к , так как 8 – положительное число. А вот если взять имеющий смысл корень из отрицательного числа, например, , и на базе указанного выше свойства заменить его на , то мы фактически заменим −2 на 2 . Действительно, , а . То есть, при отрицательных a равенство может быть и неверным, как могут быть неверными и другие свойства корней без учета оговоренных для них условий.

    Но сказанное в предыдущем пункте вовсе не означает, что выражения с отрицательными числами под знаками корней невозможно преобразовывать с использованием свойств корней. Их просто предварительно нужно «подготовить», применив правила действий с числами или воспользовавшись определением корня нечетной степени из отрицательного числа, которому соответствует равенство , где −a – отрицательное число (при этом a – положительное). Например, нельзя сразу заменить на , так как −2 и −3 – отрицательные числа, но позволяет нам от корня перейти к , и уже дальше применять свойство корня из произведения: . А в одном из предыдущих примеров переходить от корня к корню восемнадцатой степени нужно было не так , а так .

    Итак, для преобразования выражений с использованием свойств корней, надо

    • выбрать подходящее свойство из списка,
    • убедиться, что числа под корнем удовлетворяют условиям для выбранного свойства (в противном случае требуется выполнить предварительные преобразования),
    • и провести задуманное преобразование.

    Преобразование выражений с переменными под знаками корней

    Для преобразования иррациональных выражений, содержащих под знаком корня не только числа, но и переменные, свойства корней, перечисленные в первом пункте этой статьи, приходится применять аккуратно. Связано это по большей части с условиями, которым должны удовлетворять числа, участвующие в формулах. Например, опираясь на формулу , выражение можно заменить выражением лишь для таких значений x , которые удовлетворяют условиям x≥0 и x+1≥0 , так как указанная формула задана для a≥0 и b≥0 .

    Чем опасно игнорирование этих условий? Ответ на этот вопрос наглядно демонстрирует следующий пример. Допустим, нам нужно вычислить значение выражения при x=−2 . Если сразу подставить вместо переменной x число −2 , то получим нужное нам значение . А теперь представим, что мы, исходя из каких-то соображений, преобразовали заданное выражение к виду , и только после этого решили вычислить значение. Подставляем вместо x число −2 и приходим к выражению , которое не имеет смысла.

    Давайте проследим, что происходит с областью допустимых значений (ОДЗ) переменной x при переходе от выражения к выражению . ОДЗ мы упомянули не случайно, так как это серьезный инструмент контроля допустимости проделанных преобразований, и изменение ОДЗ после преобразования выражения должно как минимум насторожить. Найти ОДЗ для указанных выражений не составляет труда. Для выражения ОДЗ определяется из неравенства x·(x+1)≥0 , его решение дает числовое множество (−∞, −1]∪∪}