Коэффициент корреляции Спирмена. Коэффициент ранговой корреляции Спирмена. Корреляционный анализ спирмена

Коэффициент корреляции Спирмена. Коэффициент ранговой корреляции Спирмена. Корреляционный анализ спирмена

На практике для определения тесноты связи двух признаков часто применяется коэффициент ранговой корреляции Спирмена (Р). Значения каждого признака ранжируются по степени возрастания (от 1 до n), затем определяется разница (d) между рангами, соответствующими одному наблюдению.

Пример №1 . Зависимость между объемом промышленной продукции и инвестициями в основной капитал по 10 областям одного из федеральных округов РФ в 2003 году характеризуется следующими данными.
Вычислите ранговые коэффициенты корреляции Спирмена и Кендэла . Проверить их значимость при α=0,05. Сформулируйте вывод о зависимости между объемом промышленной продукции и инвестициями в основной капитал по рассматриваемым областям РФ.

Присвоим ранги признаку Y и фактору X . Найдем сумму разности квадратов d 2 .
Используя калькулятор , вычислим коэффициент ранговой корреляции Спирмена:

X Y ранг X, d x ранг Y, d y (d x - d y) 2
1.3 300 1 2 1
1.8 1335 2 12 100
2.4 250 3 1 4
3.4 946 4 8 16
4.8 670 5 7 4
5.1 400 6 4 4
6.3 380 7 3 16
7.5 450 8 5 9
7.8 500 9 6 9
17.5 1582 10 16 36
18.3 1216 11 9 4
22.5 1435 12 14 4
24.9 1445 13 15 4
25.8 1820 14 19 25
28.5 1246 15 10 25
33.4 1435 16 14 4
42.4 1800 17 18 1
45 1360 18 13 25
50.4 1256 19 11 64
54.8 1700 20 17 9
364

Связь между признаком Y фактором X сильная и прямая.

Оценка коэффициента ранговой корреляции Спирмена



По таблице Стьюдента находим Tтабл.
T табл = (18;0.05) = 1.734
Поскольку Tнабл > Tтабл, то отклоняем гипотезу о равенстве нулю коэффициента ранговой корреляции. Другими словами, коэффициента ранговой корреляции Спирмена статистически - значим.

Интервальная оценка для коэффициента ранговой корреляции (доверительный интервал)
Доверительный интервал для коэффициента ранговой корреляции Спирмена: p(0.5431;0.9095).

Пример №2 . Исходные данные.

5 4
3 4
1 3
3 1
6 6
2 2
Так как в матрице имеются связанные ранги (одинаковый ранговый номер) 1-го ряда, произведем их переформирование. Переформирование рангов производиться без изменения важности ранга, то есть между ранговыми номерами должны сохраниться соответствующие соотношения (больше, меньше или равно). Также не рекомендуется ставить ранг выше 1 и ниже значения равного количеству параметров (в данном случае n = 6). Переформирование рангов производится в табл.
Новые ранги
1 1 1
2 2 2
3 3 3.5
4 3 3.5
5 5 5
6 6 6
Так как в матрице имеются связанные ранги 2-го ряда, произведем их переформирование. Переформирование рангов производится в табл.
Номера мест в упорядоченном ряду Расположение факторов по оценке эксперта Новые ранги
1 1 1
2 2 2
3 3 3
4 4 4.5
5 4 4.5
6 6 6
Матрица рангов.
ранг X, d x ранг Y, d y (d x - d y) 2
5 4.5 0.25
3.5 4.5 1
1 3 4
3.5 1 6.25
6 6 0
2 2 0
21 21 11.5
Поскольку среди значений признаков х и у встречается несколько одинаковых, т.е. образуются связанные ранги, то в таком случае коэффициент Спирмена вычисляется как:

где


j - номера связок по порядку для признака х;
А j - число одинаковых рангов в j-й связке по х;
k - номера связок по порядку для признака у;
В k - число одинаковых рангов в k-й связке по у.
A = [(2 3 -2)]/12 = 0.5
B = [(2 3 -2)]/12 = 0.5
D = A + B = 0.5 + 0.5 = 1

Связь между признаком Y и фактором X умеренная и прямая.

Ранговая корреляция Спирмена (корреляция рангов). Ранговая корреляция Спирмена - самый простой способ определения степени связи между факторами. Название метода свидетельствует о том, что связь определяют между рангами, то есть рядами полученных количественных значений, ранжированных в порядке убывания или возрастания. Надо иметь в виду, что, во-первых, ранговое корреляцию Не рекомендуется проводить, если связь пар меньше четырех и больше двадцати; во-вторых, ранговая корреляция позволяет определять связь и в другом случае, если значение имеют полуколичественный характер, то есть не имеют числового выражения, отражают четкий порядок следования этих величин; в-третьих, ранговое корреляцию целесообразно применять в тех случаях, когда достаточно получить приблизительные данные. Пример расчета коэффициента ранговой корреляции для определения вопрос: замеряют вопросник X и Y подобные личностные качества испытуемых. С помощью двух вопросников (X и Y), которые требуют альтернативных ответов "да" или "нет", получили первичные результаты - ответы 15 испытуемых (N = 10). Результаты подали в виде суммы утвердительных ответов отдельно для вопросника X и для вопросника В. Эти результаты сведены в табл. 5.19.

Таблица 5.19. Табулирование первичных результатов для расчета коэффициента ранговой корреляции по Спирмену (р) *

Анализ сводной корреляционной матрицы. Метод корреляционных плеяд.

Пример. В табл. 6.18 приведены интерпретации одиннадцати переменных, которые тестируют по методике Векслера. Данные получили на однородной выборке в возрасте от 18 до 25 лет (n = 800).

Перед расслаиванием корреляционную матрицу целесообразно ранжировать. Для этого в исходной матрицы вычисляют средние значения коэффициентов корреляции каждой переменной со всеми остальными.

Затем по табл. 5.20 определяют допустимые уровни расслоение корреляционной матрицы при заданных доверительной вероятности 0,95 и n - количества

Таблица 6.20. Восходящая корреляционная матрица

Переменные 1 2 3 4 бы 0 7 8 0 10 11 M (rij) Ранг
1 1 0,637 0,488 0,623 0,282 0,647 0,371 0,485 0,371 0,365 0,336 0,454 1
2 1 0,810 0,557 0,291 0,508 0,173 0,486 0,371 0,273 0,273 0,363 4
3 1 0,346 0,291 0,406 0,360 0,818 0,346 0,291 0,282 0,336 7
4 1 0,273 0,572 0,318 0,442 0,310 0,318 0,291 0,414 3
5 1 0,354 0,254 0,216 0,236 0,207 0,149 0,264 11
6 1 0,365 0,405 0,336 0,345 0,282 0,430 2
7 1 0,310 0,388 0,264 0,266 0,310 9
8 1 0,897 0,363 0,388 0,363 5
9 1 0,388 0,430 0,846 6
10 1 0,336 0,310 8
11 1 0,300 10

Обозначения: 1 - общая осведомленность; 2 - понятийнисть; 3 - внимательность; 4 - вдатнисть К обобщения; б - непосредственное запоминание (на цифрах) 6 - уровень освоения родном языке; 7 - скорость овладения сенсомоторном навыками (кодирование символами) 8 - наблюдательность; 9 - комбинаторные способности (к анализу и синтезу) 10 - способность к организации частей в осмысленное целое; 11 - способность к эвристического синтеза; M (rij) - среднее значение коэффициентов корреляции переменной с остальными переменных наблюдений (в нашем случае n = 800): r (0) - значение нулевой "Рассекая" плоскости - минимальная значимая абсолютная величина коэффициента корреляции (n - 120, r (0) = 0,236; n = 40, r (0) = 0,407) | Δr | - допустимый шаг расслоения (n = 40, | Δr | = 0,558) в - допустимое количество уровней расслоения (n = 40, s = 1 ; n = 120, s = 2); r (1), r (2), ..., r (9) - абсолютное значение секущей плоскости (n = 40, r (1) = 0,965).

Для n = 800 находим значение гтип и границ ги после чего Расслаивающая ранжированы корреляционную матрицу, выделяя корреляционные плеяды внутри слоев, или отделяем части корреляционной матрицы, вырисовывая объединения корреляционных плеяд для вышележащих слоев (рис. 5.5).

Содержательный анализ полученных плеяд выходит за пределы математической статистики. Надо отметить два формальные показатели, которые помогают при содержательной интерпретации плеяд. Одним существенным показателем служит степень вершины, то есть количество ребер, примыкающих к вершине. Переменная с наибольшим количеством ребер является "ядром" плеяды и ее можно рассматривать как индикатор остальных переменных этой плеяды. Другой существенный показатель - плотность связи. Переменная может иметь меньше связей в одной плеяде, но теснее, и больше связей в другой плеяде, однако менее тесных.

Предсказания и оценки. Уравнение у = b1x + b0 называется общим уравнением прямой. Оно свидетельствует о том, что пары точек (x, y), которые

Рис. 5.5. Корреляционные плеяды, полученные расслоением матрицы

лежат на некоторой прямой, связанные так, что для любого значения х величину в в находящегося с ним в паре, можно найти, умножив х на некоторое число b1 добавив вторых, число b0 к этому произведению.

Коэффициент регрессии позволяет определить степень изменения следственной фактора при изменении причинного фактора на одну единицу. Абсолютные величины характеризуют зависимость между переменными факторами по их абсолютными значениями. Коэффициент регрессии вычисляют по формуле:

Планирование и анализ экспериментов. Планирование и анализ экспериментов - это третья важная отрасль статистических методов, разработанных для нахождения и проверки причинных связей между переменными.

Для исследования многофакторных зависимостей в последнее время все чаще используют методы математического планирования эксперимента.

Возможность одновременного варьирования всеми факторами позволяет: а) уменьшить количество опытов;

б) свести ошибку эксперимента к минимуму;

в) упростить обработку полученных данных;

г) обеспечить наглядность и легкость по сравнению результатов.

Каждый фактор может приобретать некоторую соответствующее количество различных значений, которые называются уровнями и обозначают -1, 0 и 1. Фиксированный набор уровней факторов определяет условия одного из возможных опытов.

Совокупность всех возможных сочетаний вычисляют по формуле:

Полным факторным экспериментом называется эксперимент, в котором реализуются все возможные сочетания уровней факторов. Полные факторные эксперименты могут обладать свойством ортогональности. При ортогональном планировании факторы в эксперименте является некоррелированными, коэффициенты регрессии, которые высчитывают в итоге, определяют независимо друг от друга.

Важным преимуществом метода математического планирования эксперимента является его универсальность, пригодность во многих областях исследований.

Рассмотрим пример сравнения влияния некоторых факторов на формирование уровня психического напряжения в регулировщиков цветных телевизоров.

В основу эксперимента положен ортогональный План 2 три (три фактора изменяются на двух уровнях).

Эксперимент проводили с полным части 2 +3 с трехкратным повторением.

Ортогональное планирование базируется на построении уравнения регрессии. Для трех факторов оно выглядит так:

Обработка результатов в этом примере включает:

а) построение ортогонального плана 2 +3 таблице для расчета;

б) вычисления коэффициентов регрессии;

в) проверку их значимости;

г) интерпретацию полученных данных.

Для коэффициентов регрессии упомянутого уравнения надо было поставить N = 2 3 = 8 вариантов, чтобы иметь возможность оценить значимость коэффициентов, где количество повторений К равнялось 3.

Составлена матрица планирования эксперимента выглядела.

- это количественная оценка статистического изучения связи между явлениями, используемая в непараметрических методах.

Показатель показывает, как отличается полученная при наблюдении сумма квадратов разностей между рангами от случая отсутствия связи.

Назначение сервиса . С помощью данного онлайн-калькулятора производится:

  • расчет коэффициента ранговой корреляции Спирмена;
  • вычисление доверительного интервала для коэффициента и оценка его значимости;

Коэффициент ранговой корреляции Спирмена относится к показателям оценки тесноты связи. Качественную характеристику тесноты связи коэффициента ранговой корреляции, как и других коэффициентов корреляции, можно оценить по шкале Чеддока .

Расчет коэффициента состоит из следующих этапов:

Свойства коэффициента ранговой корреляции Спирмена

Область применения . Коэффициент корреляции рангов используется для оценки качества связи между двумя совокупностями. Кроме этого, его статистическая значимость применяется при анализе данных на гетероскедастичность .

Пример . По выборке данных наблюдаемых переменных X и Y:

  1. составить ранговую таблицу;
  2. найти коэффициент ранговой корреляции Спирмена и проверить его значимость на уровне 2a
  3. оценить характер зависимости
Решение. Присвоим ранги признаку Y и фактору X .
X Y ранг X, d x ранг Y, d y
28 21 1 1
30 25 2 2
36 29 4 3
40 31 5 4
30 32 3 5
46 34 6 6
56 35 8 7
54 38 7 8
60 39 10 9
56 41 9 10
60 42 11 11
68 44 12 12
70 46 13 13
76 50 14 14

Матрица рангов.
ранг X, d x ранг Y, d y (d x - d y) 2
1 1 0
2 2 0
4 3 1
5 4 1
3 5 4
6 6 0
8 7 1
7 8 1
10 9 1
9 10 1
11 11 0
12 12 0
13 13 0
14 14 0
105 105 10

Проверка правильности составления матрицы на основе исчисления контрольной суммы:

Сумма по столбцам матрицы равны между собой и контрольной суммы, значит, матрица составлена правильно.
По формуле вычислим коэффициент ранговой корреляции Спирмена.


Связь между признаком Y и фактором X сильная и прямая
Значимость коэффициента ранговой корреляции Спирмена
Для того чтобы при уровне значимости α проверить нулевую гипотезу о равенстве нулю генерального коэффициента ранговой корреляции Спирмена при конкурирующей гипотезе H i . p ≠ 0, надо вычислить критическую точку:

где n - объем выборки; ρ - выборочный коэффициент ранговой корреляции Спирмена: t(α, к) - критическая точка двусторонней критической области, которую находят по таблице критических точек распределения Стьюдента, по уровню значимости α и числу степеней свободы k = n-2.
Если |p| < Т kp - нет оснований отвергнуть нулевую гипотезу. Ранговая корреляционная связь между качественными признаками не значима. Если |p| > T kp - нулевую гипотезу отвергают. Между качественными признаками существует значимая ранговая корреляционная связь.
По таблице Стьюдента находим t(α/2, k) = (0.1/2;12) = 1.782

Поскольку T kp < ρ , то отклоняем гипотезу о равенстве 0 коэффициента ранговой корреляции Спирмена. Другими словами, коэффициент ранговой корреляции статистически - значим и ранговая корреляционная связь между оценками по двум тестам значимая.

Метод ранговой корреляции Спирмена позволяет определить тесноту (силу) и направление корреляционной связи между двумя признаками или двумя профилями (иерархиями) признаков.

Для подсчета ранговой корреляции необходимо располагать двумя рядами значений,

которые могут быть проранжированы. Такими рядами значений могут быть:

1) два признака, измеренные в одной и той же группе испытуемых;

2) две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же набору признаков;

3) две групповые иерархии признаков,

4) индивидуальная и групповая иерархии признаков.

Вначале показатели ранжируются отдельно по каждому из признаков.

Как правило, меньшему значению признака начисляется меньший ранг.

В первом случае (два признака) ранжируются индивидуальные значения по первому признаку, полученные разными испытуемыми, а затем индивидуальные значения по второму признаку.

Если два признака связаны положительно, то испытуемые, имеющие низкие ранги по одному из них, будут иметь низкие ранги и по другому, а испытуемые, имеющие высокие ранги по

одному из признаков, будут иметь по другому признаку также высокие ранги. Для подсчета rs необходимо определить разности (d) между рангами, полученными данным испытуемым по обоим признакам. Затем эти показатели d определенным образом преобразуются и вычитаются из 1. Чем

меньше разности между рангами, тем больше будет rs, тем ближе он будет к +1.

Если корреляция отсутствует, то все ранги будут перемешаны и между ними не будет

никакого соответствия. Формула составлена так, что в этом случае rs окажется близким к 0.

В случае отрицательной корреляции низким рангам испытуемых по одному признаку

будут соответствовать высокие ранги по другому признаку, и наоборот. Чем больше несовпадение между рангами испытуемых по двум переменным, тем ближе rs к -1.

Во втором случае (два индивидуальных профиля), ранжируются индивидуальные

значения, полученные каждым из 2-х испытуемым по определенному (одинаковому для них обоих) набору признаков. Первый ранг получит признак с самым низким значением; второй ранг – признак с более высоким значением и т.д. Очевидно, что все признаки должны быть измерены в одних и тех же единицах, иначе ранжирование невозможно. Например, невозможно проранжировать показатели по личностному опроснику Кеттелла (16PF), если они выражены в "сырых" баллах, поскольку по разным факторам диапазоны значений различны: от 0 до 13, от 0 до

20 и от 0 до 26. Мы не можем сказать, какой из факторов будет занимать первое место по выраженности, пока не приведем все значения к единой шкале (чаще всего это шкала стенов).

Если индивидуальные иерархии двух испытуемых связаны положительно, то признаки, имеющие низкие ранги у одного из них, будут иметь низкие ранги и у другого, и наоборот. Например, если у одного испытуемого фактор Е (доминантность) имеет самый низкий ранг, то и у другого испытуемого он должен иметь низкий ранг, если у одного испытуемого фактор С

(эмоциональная устойчивость) имеет высший ранг, то и другой испытуемый должен иметь по

этому фактору высокий ранг и т.д.

В третьем случае (два групповых профиля), ранжируются среднегрупповые значения, полученные в 2-х группах испытуемых по определенному, одинаковому для двух групп, набору признаков. В дальнейшем линия рассуждений такая же, как и в предыдущих двух случаях.

В случае 4-ом (индивидуальный и групповой профили), ранжируются отдельно индивидуальные значения испытуемого и среднегрупповые значения по тому же набору признаков, которые получены, как правило, при исключении этого отдельного испытуемого – он не участвует в среднегрупповом профиле, с которым будет сопоставляться его индивидуальный профиль. Ранговая корреляция позволит проверить, насколько согласованы индивидуальный и групповой профили.

Во всех четырех случаях значимость полученного коэффициента корреляции определяется по количеству ранжированных значений N. В первом случае это количество будет совпадать с объемом выборки n. Во втором случае количеством наблюдений будет количество признаков, составляющих иерархию. В третьем и четвертом случае N – это также количество сопоставляемых признаков, а не количество испытуемых в группах. Подробные пояснения даны в примерах. Если абсолютная величина rs достигает критического значения или превышает его, корреляция достоверна.

Гипотезы.

Возможны два варианта гипотез. Первый относится к случаю 1, второй – к трем остальным случаям.

Первый вариант гипотез

H0: Корреляция между переменными А и Б не отличается от нуля.

H1: Корреляция между переменными А и Б достоверно отличается от нуля.

Второй вариант гипотез

H0: Корреляция между иерархиями А и Б не отличается от нуля.

H1: Корреляция между иерархиями А и Б достоверно отличается от нуля.

Ограничения коэффициента ранговой корреляции

1. По каждой переменной должно быть представлено не менее 5 наблюдений. Верхняя граница выборки определяется имеющимися таблицами критических значений.

2. Коэффициент ранговой корреляции Спирмена rs при большом количестве одинаковых рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале оба коррелируемых ряда должны представлять собой две последовательности несовпадающих значений. В случае, если это условие не соблюдается, необходимо вносить поправку на одинаковые ранги.

Коэффициент ранговой корреляции Спирмена подсчитывается по формуле:

Если в обоих сопоставляемых ранговых рядах присутствуют группы одинаковых рангов, перед подсчетом коэффициента ранговой корреляции необходимо внести поправки на одинаковые ранги Та и Тв:

Та = Σ (а3 – а)/12,

Тв = Σ (в3 – в)/12,

где а – объем каждой группы одинаковых рангов в ранговом ряду А, в – объем каждой

группы одинаковых рангов в ранговом ряду В.

Для подсчета эмпирического значения rs используют формулу:

Расчет коэффициента ранговой корреляции Спирмена rs

1. Определить, какие два признака или две иерархии признаков будут участвовать в

сопоставлении как переменные А и В.

2. Проранжировать значения переменной А, начисляя ранг 1 наименьшему значению, в соответствии с правилами ранжирования (см. П.2.3). Занести ранги в первый столбец таблицы по порядку номеров испытуемых или признаков.

3. Проранжировать значения переменной В, в соответствии с теми же правилами. Занести ранги во второй столбец таблицы по порядку номеров испытуемых или признаков.

5. Возвести каждую разность в квадрат: d2. Эти значения занести в четвертый столбец таблицы.

Та = Σ (а3 – а)/12,

Тв = Σ (в3 – в)/12,

где а – объем каждой группы одинаковых рангов в ранговом ряду А; в – объем каждой группы

одинаковых рангов в ранговом ряду В.

а) при отсутствии одинаковых рангов

rs  1 − 6 ⋅

б) при наличии одинаковых рангов

Σd 2  T  T

r  1 − 6 ⋅ a в,

где Σd2 – сумма квадратов разностей между рангами; Та и Тв – поправки на одинаковые

N – количество испытуемых или признаков, участвовавших в ранжировании.

9. Определить по Таблице (см. Приложение 4.3) критические значения rs для данного N. Если rs, превышает критическое значение или, по крайней мере, равен ему, корреляция достоверно отличается от 0.

Пример 4.1.При определении степени зависимости реакции употребления алкоголя на глазодвигательную реакцию в испытуемой группе были получены данные до употребления алкоголя и после употребления. Зависит ли реакция испытуемого от состояния опьянения?

Результаты эксперимента:

До:16, 13, 14, 9, 10, 13, 14, 14, 18, 20, 15, 10, 9, 10, 16, 17, 18. После: 24, 9, 10, 23, 20, 11, 12, 19, 18, 13, 14, 12, 14, 7, 9, 14. Сформулируем гипотезы:

Н0: корреляция между степенью зависимости реакции до употребления алкоголя и после не отличается от нуля.

Н1: корреляция между степенью зависимости реакции до употребления алкоголя и после достоверно отличается от нуля.

Таблица 4.1. Расчет d2 для рангового коэффициента корреляции Спирмена rs при сопоставлении показателей глазодвигательной реакции до эксперимента и после (N=17)

значения

значения

Так как, мы имеем повторяющиеся ранги, то в данном случае будем применять формулу с поправкой на одинаковые ранги:

Та= ((23-2)+(33-3)+(23-2)+(33-3)+(23-2)+(23-2))/12=6

Тb =((23-2)+(23-2)+(33-3))/12=3

Найдем эмпирическое значение коэффициента Спирмена:

rs = 1- 6*((767,75+6+3)/(17*(172-1)))=0,05

По таблице (приложение 4.3) находим критические значения коэффициента корреляции

0,48 (p ≤ 0,05)

0,62 (p ≤ 0,01)

Получаем

rs=0,05∠rкр(0,05)=0,48

Вывод: Н1гипотеза отвергается и принимается Н0. Т.е. корреляция между степенью

зависимости реакции до употребления алкоголя и после не отличается от нуля.

Коэффициент корреляции Пирсона

Коэффициентr- Пирсона применяется для изучения взаимосвязи двух метрических переменных, измеренных на одной и той же выборке. Существует множество ситуаций, в которых уместно его применение. Влияет ли интеллект на успеваемость на старших курсах университета? Связан ли размер заработной платы работника с его доброжелательностью к коллегам? Влияет ли настроение школьника на успешность решения сложной арифметической задачи? Для ответа на подобные вопросы исследователь должен измерить два интересующих его показателя у каждого члена выборки.

На величину коэффициента корреляции не влияет то, в каких единицах измерения представлены признаки. Следовательно, любые линейные преобразования признаков (умножение на константу, прибавление константы) не меняют значения коэффициента корреляции. Исключением является умножение одного из признаков на отрицательную константу: коэффициент корреляции меняет свой знак на противоположный.

Применение корреляции Спирмена и Пирсона.

Корреляция Пирсона есть мера линейной связи между двумя переменными. Она позволяет определить, насколько пропорциональна изменчивость двух переменных. Если переменные пропорциональны друг другу, то графически связь между ними можно представить в виде прямой линии с положительным (прямая пропорция) или отрицательным (обратная пропорция) наклоном.

На практике связь между двумя переменными, если она есть, является вероятностной и графически выглядит как облако рассеивания эллипсоидной формы. Этот эллипсоид, однако, можно представить (аппроксимировать) в виде прямой линии, или линии регрессии. Линия регрессии - это прямая, построенная методом наименьших квадратов: сумма квадратов расстояний (вычисленных по оси Y) от каждой точки графика рассеивания до прямой является минимальной.

Особое значение для оценки точности предсказания имеет дисперсия оценок зависимой переменной. По сути, дисперсия оценок зависимой переменной Y - это та часть ее полной дисперсии, которая обусловлена влиянием независимой переменной X. Иначе говоря, отношение дисперсии оценок зависимой переменной к ее истинной дисперсии равно квадрату коэффициента корреляции.

Квадрат коэффициента корреляции зависимой и независимой переменных представляет долю дисперсии зависимой переменной, обусловленной влиянием независимой переменной, и называется коэффициентом детерминации. Коэффициент детерминации, таким образом, показывает, в какой степени изменчивость одной переменной обусловлена (детерминирована) влиянием другой переменной.

Коэффициент детерминации обладает важным преимуществом по сравнению с коэффициентом корреляции. Корреляция не является линейной функцией связи между двумя переменными. Поэтому, среднее арифметическое коэффициентов корреляции для нескольких выборок не совпадает с корреляцией, вычисленной сразу для всех испытуемых из этих выборок (т.е. коэффициент корреляции не аддитивен). Напротив, коэффициент детерминации отражает связь линейно и поэтому является аддитивным: допускается его усреднение для нескольких выборок.

Дополнительную информацию о силе связи дает значение коэффициента корреляции в квадрате - коэффициент детерминации: это часть дисперсии одной переменной, которая может быть объяснена влиянием другой переменной. В отличие от коэффициента корреляции коэффициент детерминации линейно возрастает с увеличением силы связи.

Коэффициенты корреляции Спирмена и τ- Кендалла (ранговые корреляции)

Если обе переменные, между которыми изучается связь, представлены в порядковой шкале, или одна из них - в порядковой, а другая - в метрической, то применяются ранговые коэффициенты корреляции: Спирмена или τ- Кенделла. И тот, и другой коэффициент требует для своего применения предварительного ранжирования обеих переменных.

Коэффициент ранговой корреляции Спирмена - это непараметрический метод, который используется с целью статистического изучения связи между явлениями. В этом случае определяется фактическая степень параллелизма между двумя количественными рядами изучаемых признаков и дается оценка тесноты установленной связи с помощью количественно выраженного коэффициента.

Если члены группы численностью были ранжированы сначала по переменной x, затем - по переменной y, то корреляцию между переменными x и y можно получить, просто вычислив коэффициент Пирсона для двух рядов рангов. При условии отсутствия связей в рангах (т.е. отсутствия повторяющихся рангов) по той и другой переменной, формула для Пирсона может быть существенно упрощена в вычислительном отношении и преобразована в формулу, известную как Спирмена.

Мощность коэффициента ранговой корреляции Спирмена несколько уступает мощности параметрического коэффициента корреляции.

Коэффицент ранговой корреляции целесообразно применять при наличии небольшого количества наблюдений. Данный метод может быть использован не только для количественно выраженных данных, но также и в случаях, когда регистрируемые значения определяются описательными признаками различной интенсивности.

Коэффициент ранговой корреляции Спирмена при большом количестве одинаковых рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале оба коррелируемых ряда должны представлять собой две последовательности несовпадающих значений

Альтернативу корреляции Спирмена для рангов представляет корреляция τ- Кендалла. В основе корреляции, предложенной М.Кендаллом, лежит идея о том, что о направлении связи можно судить, попарно сравнивая между собой испытуемых: если у пары испытуемых изменение по x совпадает по направлению с изменением по y, то это свидетельствует о положительной связи, если не совпадает - то об отрицательной связи.

Коэффициенты корреляции были специально разработаны для численного определения силы и направления связи между двумя свойствами, измеренными в числовых шкалах (метрических или ранговых). Как уже упоминалось, максимальной силе связи соответствуют значения корреляции +1 (строгая прямая или прямо пропорциональная связь) и -1 (строгая обратная или обратно пропорциональная связь), отсутствию связи соответствует корреляция, равная нулю. Дополнительную информацию о силе связи дает значение коэффициента детерминации: это часть дисперсии одной переменной, которая может быть объяснена влиянием другой переменной.

9. Параметрические методы сравнения данных


Параметрические методы сравнения применяются в том случае, если ваши переменные были измерены в метрической шкале.

Сравнение дисперсий 2- х выборок по критерию Фишера.


Данный метод позволяет проверить гипотезу о том, что дисперсии 2-х генеральных совокупностей, из которых извлечены сравниваемые выборки, отличаются друг от друга. Ограничения метода - распределения признака в обеих выборках не должны отличаться от нормального.

Альтернативой сравнения дисперсий является критерий Ливена, для которого нет необходимости в проверке на нормальность распределения. Данный метод может применяться для проверки предположения о равенстве (гомогенности) дисперсий перед проверкой достоверности различия средних по критерию Стьюдента для независимых выборок разной численности.