Что такое твердость? Обозначение и определение твердости. Министерство образования российской федерации

Что такое твердость? Обозначение и определение твердости. Министерство образования российской федерации

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Саратовский государственный технический университет

Определение твердости материалов

Методические указания к учебно-исследовательской лабораторной работе для студентов всех специальностей

дневной, вечерней и заочной форм обучения

Одобрено

редакционно-издательским советом

Саратовского государственного

технического университета

Саратов 2009

Цель работы: ознакомить студентов с методами определения твердости материалов

Определение твердости является широко применяемым в лабораторных и заводских условиях способом испытаний для характеристики механических свойств материалов.

Твердость металлов измеряют при помощи воздействия на поверхность металла наконечника, изготовленного из малодеформирующего материала (твердая закаленная сталь, алмаз, сапфир, или твердый сплав). Наконечник может иметь форму шарика, конуса, пирамиды или иглы.

Существует несколько способов измерения твердости, различающихся по характеру воздействия наконечника: вдавливание наконечника, царапание поверхности, удар наконечника-шарика.

Наибольшее применение получило измерение твердости вдавливанием. В результате вдавливания поверхностные слои металла, находящиеся под наконечником и вблизи него, пластически деформируются. После снятия нагрузки остается отпечаток. Особенность происходящей при этом деформации в том, что она протекает только в небольшом объеме, окруженном недеформированным металлом. Таким образом, твердость характеризует сопротивление металла пластической деформации и представляет собой его механическое свойство.

Следует различать два способа определения твердости вдавливанием: измерение макротвердости и измерение микротвердости:

1. Измерение твердости (макротвердости) характерно тем, что в испытуемый металл вдавливается тело значительных размеров (например, стальной шарик диаметром 10 мм), проникающее на сравнительно большую глубину. В результате чего в деформируемом объеме оказываются представленными все фазы и структурные составляющие сплава. Измеренная твердость должна в этом случае характеризовать твердость всего испытуемого материала (“усредненная” твердость).

Выбор формы, размеров наконечника и величины нагрузки зависят от целей испытания, структуры, ожидаемых свойств, состояния поверхности и размеров испытуемого образца.

2. Измерение микротвердости имеет целью определить твердость отдельных зерен, фаз и структурных составляющих сплава. В этом случае объем, деформированный вдавливанием, должен быть меньше объема измеряемого зерна. Поэтому прилагаемая нагрузка выбирается небольшой.

Наиболее широко применяются следующие способы измерения твердости:

    вдавливанием стального шарика (метод Бринелля);

    вдавливанием алмазного конуса (метод Роквелла);

    вдавливанием четырехгранной алмазной пирамиды (метод Виккерса).

ИЗМЕРЕНИЕ ТВЕРДОСТИ ВДАВЛИВАНИЕМ ШАРИКА

(ТВЕРДОСТЬ ПО БРИНЕЛЛЮ)

Этот способ используется для определения твердости как металлов, так и неметаллических материалов.

При измерении твердости металлов по Бринеллю в материал вдавливается стальной закаленный шарик под действием заданной нагрузки в течении определенного времени. В результате на поверхности образца образуется отпечаток, диаметр которого измеряют. Значение твердости определяют по величине поверхности отпечатка, оставляемого шариком. Шарик вдавливается с помощью пресса (рис. 1). Испытуемый образец (деталь) 3 устанавливается на столик 1, прошлифованной поверхностью кверху. Поворотом вручную маховика 2 по часовой стрелке столик поднимают вверх, и образец 3 прижимается к шарику 4. Нагрузка прилагается автоматически с помощью электродвигателя 5 при нажатии пусковой кнопки. Эта нагрузка, создаваемая грузом 6, действует обычно 10-60 с в зависимости от твердости измеряемого материала. После автоматического выключения двигателя, поворачивая маховик 2 против часовой стрелки, опускают столик прибора и снимают образец 3.

Рис. 1. Схема измерения твердости по Бринеллю

На образце остается отпечаток со сферической поверхностью (лунка). Диаметр отпечатка, измеряют обычно лупой, на окуляре которой нанесена шкала с делениями, соответствующими 0,1 мм. Схема испытания на твердость по методу Бринелля и отсчет по шкале показаны на рис. 1.

Число твердости по Бринеллю, обозначаемая НВ, определяется путем деления нагрузки на площадь поверхности сферического отпечатка, и может быть определено по формуле:

выражена в Ньютонах или

,

выражена в килограмм-силе.

В этих выражениях

А – площадь поверхности отпечатка, мм;

D - диаметр вдавливаемого шарика, мм;

d - диаметр отпечатка, мм.

Диаметр шарика, нагрузку и продолжительность выдержки под нагрузкой выбирают в зависимости от твердости и толщины испытуемого изделия или образца. Для испытания используют образцы с чистой и гладкой поверхностью, а толщина образцов должна быть не менее десятикратной глубины отпечатка.

Нормы испытания на твердость по Бринеллю приведены в табл. 1.

Таблица 1

Нормы испытания на твердость по Бринеллю

При измерении твердости шариком определенного диаметра и установленными нагрузками нет необходимости проводить расчет по указанной выше формуле. На практике используется заранее составленными таблицами, указывающими число НВ от диаметра отпечатка.

Измерение твердости по Бринеллю не является универсальным способом, поскольку не позволяет:

а) использовать материалы с твердостью более НВ4500Н, так как шарик будет деформироваться и показания будут не точны;

б) измерять твердость тонкого поверхностного слоя (толщиной 1-2 мм), так как шарик будет продавливать тонкий слой металла.

ИЗМЕРЕНИЕ ТВЕРДОСТИ ВДАВЛИВАНИЕМ

АЛМАЗНОГО КОНУСА ИЛИ СТАЛЬНОГО ШАРИКА

(ТВЕРДОСТЬ ПО РОКВЕЛЛУ)

Принципиальное отличие измерения твердости по способу Роквелла от измерения по способу Бринелля состоит в том, что ее измеряют не по диаметру, а по глубине отпечатка получаемого в результате вдавливания алмазного конуса с углом при вершине равным 120 о или стального закаленного шарика диаметром 1,588 мм. Конус или шарик вдавливают в испытуемый образец под действием двух последовательно прилагаемых нагрузок: предварительной Р 0 и основной будет равна: Р= Р 0 + Р 1 .

При испытании сначала прикладывают предварительную нагрузку Р 0 =100 Н, затем общую нагрузку Р , равную: при вдавливании шарика (шкала В) 1000 Н; при вдавливании алмазного конуса (шкала С) 1500 Н; при вдавливании алмазного конуса (шкала А) 600 Н (рис. 2).

Рис.2. Разновидность глубины проникновения наконечника под действием двух нагрузок

Твердость по Роквеллу обозначается цифрами и буквами HR с указанием шкалы твердости (А,В,С).

Число твердости по Роквеллу определяют по формуле

HR = (k-(h-h 0 )/c

где h 0 - глубина внедрения наконечника под действием силы Р 0 ;

h - глубина внедрения наконечника под действием общей

нагрузки Р ;

к - постоянная величина, для шарика 0,26; для конуса 0,2;

с - цена деления циферблата индикатора.

При измерении твердости нагрузка должна действовать строго перпендикулярно к поверхности образца. Нагрузки следует прилагать плавно.

Твердость измеряют на приборе, представленном на рис. 3.

Рис.3. Схема прибора для измерения твердости по Роквеллу

Стол 1 служит для установки на нем испытуемого образца 3. Вращая по часовой стрелке маховик 2, подводят образец до соприкосновения с наконечником 4. При дальнейшем вращении маховика наконечник начинает внедряться в образец, а на шкале индикатора наблюдают за поворотом малой стрелки. Предварительное нагружение производят до тех пор, пока малая стрелка индикатора не совпадет с красной точкой.

Когда образец получает предварительную нагрузку 100 Н (10 кГс), большая стрелка индикатора принимает вертикальное положение (или близкое к нему). Точную установку шкалы индикатора на ноль производят при помощи барабана 6. Затем нажимают на клавишу 7, при этом обеспечивается действие основной нагрузки и создается общая нагрузка (предварительная + основная).

При таком нагружении большая стрелка перемещается по циферблату индикатора против часовой стрелки. Время приложения общей нагрузки 5-7 с. Затем основная нагрузка снимается автоматически и остается только предварительная. Большая стрелка индикатора перемещается по часовой стрелке. Цифра, которую укажет на циферблате индикатора большая стрелка, представляет число твердости по Роквеллу. Далее поворачивают маховик 2 против часовой стрелки, опускают столик и снимают образец.

Твердость на приборе Роквелла можно измерять:

1) алмазным конусом с общей нагрузкой 1500 Н (150 кГс). В этом случае значение твердости определяют по черной шкале “С” индикатора и обозначают НRC. Эта шкала применяется при испытании закаленных сталей (до HRC 67);

2) алмазным конусом с общей нагрузкой 600 Н (60 кГс). В этом случае значения твердости также определяются по черной шкале “С”, но обозначают HRA. Числа HRA можно перевести на числа HRC по формуле: HRC = 2 HRA - 104. Эта шкала применяется для испытания сверхтвердых сплавов (например на основе карбидов вольфрама, обладающих твердостью HRC>68), тонкого листового материала и для измерения твердости тонких поверхностных слоев (0,3-0,5 мм);

3) стальным шариком с общей нагрузкой 1000 Н (100 кГс).

В этом случае значения твердости определяют по красной шкале “В” и обозначают HRB. Шкала В служит для испытания металлов средней твердости и для испытания изделия толщиной от 0,8 до 2 мм.

К достоинствам метода Роквелла следует отнести высокую производительность, простоту обслуживания, точность измерения и сохранение качественной поверхности после испытаний.

ИЗМЕРЕНИЕ ТВЕРДОСТИ ВДАВЛИВАНИЯ

АЛМАЗНОЙ ПИРАМИДЫ

(ТВЕРДОСТЬ ПО ВИККЕРСУ)

Этот способ используется для измерения твердости черных и цветных металлов и сплавов.

Твердость по методу Виккерса определяют путем вдавливания в испытуемую поверхность алмазной четырехгранной пирамиды с углом при вершине 136 0 под нагрузкой 50, 100, 200, 300, 500, 1000 Н. По диагоналям h 1 и h 2 отпечатка, пирамиды и углу при вершине пирамиды определяют площадь поверхности отпечатка и рассчитывают по формуле:

HV = (2 P sin (/2)/ d 2 ) = 1,854 (P / d 2 ),

 - угол между противоположными гранями пирамиды (136 0);

d – среднеарифметические значения длин обеих диагоналей отпечатка после снятия нагрузки, мм.

Испытания проводят на приборе (рис. 4), имеющем неподвижную станину, в нижней части которой установлен столик 1, перемещающийся по вертикали вращением маховика 2. Образец 3 устанавливают на столик испытуемой поверхностью кверху и поднимают столик почти до соприкосновения образца с алмазной пирамидой 4. Нажатием педали пускового рычага 5 приводят в действие нагружающий механизм, который через рычаг передает давление грузов 6. Продолжительность нагружения при испытании составляет от 10 до 60 с, что регистрируется сигнальной лампочкой на приборе. После снятия нагрузки столик опускают и подводят микроскоп 7, с помощью которого определяют длину диагонали отпечатка.

Рис.4. Схема прибора для измерения твердости по Виккерсу

В окуляре микроскопа (рис. 5,б) имеются подвижная шкала и три штриха - два основных 1 и 2, и один дополнительный 3 (рис. 5,б). Вращением винта 1 (рис. 5,а) подводят штрих 1 к левому углу отпечатка (рис. 5,б). Вращением микрометрического винта 2 (рис. 5,а) подводят штрих 2 к правому углу отпечатка. Полученную величину диагонали отпечатка записать в протокол испытания.

Рис.5. Схемы: а). микрометрического винта; б). определения величины отпечатка

Измерять необходимо обе диагонали отпечатка и принимать среднюю величину измерений. Полученный результат перевести в значение твердости HV, пользуясь таблицами. Возможность применения малых нагрузок 50, 100 Н позволяет определить твердость деталей малой толщины и тонких поверхностных слоев, например, цементированных, азотированных и других.

Числа твердости по Виккерсу и по Бринеллю для материалов твердостью до НВ 4500 практически совпадают. Вместе с тем, измерения пирамидой дают более точные значения для металлов с высокой твердостью, чем измерения шариком или конусом. Алмазная пирамида имеет большой угол в вершине (136 0) и диагональ его отпечатка примерно в 7 раз больше глубины отпечатка, что повышает точность измерения даже при проникновении пирамиды на небольшую глубину.

ИЗМЕРЕНИЕ МИКРОТВЕРДОСТИ

Для изучения свойств и превращений в сплавах необходимо знать не только «усредненную» твердость, представляющую твердость в результате суммарного влияния присутствующих в сплаве фаз и структурных составляющих. В некоторых случаях необходимо знать твердость отдельных фаз и структур. Микротвердость определяют вдавливанием алмазной пирамиды. Для этого используют прибор типа ПМТ-3 (рис.6), разработанный М.Н. Хрущевым и Е.С. Берковичем. Прибор состоит из штатива 8, вертикальной микроскопа с тубусом, который перемещается вверх и вниз с помощью макрометрического винта 6 и микрометрического винта 5. На верхний конец тубуса насажен окулярный микрометр 7, а в нижнем конце закреплены шток 2 с алмазной пирамидой, опакиллюминатор 9 и объективы 11. С помощью микрометрических винтов 13 перемещают столик в необходимом направлении. Ручка 1 служит для поворота столика на 90 о. Прибор снабжен двумя объективами для просмотра микрошлифа при увеличениях в 478 и 135 раз. Окуляр увеличивает в 15 раз. Окулярный микрометр имеет неподвижную сетку, отсчетный микрометрический барабанчик и каретку с подвижной сеткой. На неподвижной сетке нанесены штрихи с цифрами и угольник с прямым углом, вершина которого совпадает с цифрой 0. Для определения микротвердости применяют несколько типов наконечников: с квадратным основанием; с основанием в виде равностороннего треугольника; с ромбическим основанием; с бицилиндрическим основанием. Наиболее широко используют алмазный наконечник. Наконечник имеет угол между гранями на вершине 136 о (такой же как для измерения твердости по Виккерсу). Нагрузка для вдавливания создается грузами 3, которые устанавливаются на шток 2. В приборе применяются грузы от 1 до 500 граммов в зависимости от особенностей изучаемой структуры. Для измерения специально готовят образцы, которые шлифуют и полируют, а при необходимости подвергают травлению реактивами. Приготовленный микрошлиф устанавливают на столике 12, чтобы поверхность микрошлифа была обращена вверх. Установленный микрошлиф просматривают через окуляр. С помощью винтов столик перемещают и выбирают необходимый участок на микрошлифе. Этот участок размещают в середине поля зрения микроскопа точно в вершине угла неподвижной сетки. Затем устанавливают груз. После этого опускают шток с алмазной пирамидой, чтобы алмаз коснулся образца. В этом положении выдерживают 5 – 10 секунд, после чего шток поднимают. Столик 12 поворачивают на 180 о под объектив микроскопа и измеряют диагонали отпечатка. Длина диагонали указывается на микрометрическом барабанчике прибора. Определяют длину обеих диагоналей и вычисляют среднюю длину. Полученную среднюю длину переводят по таблице в число микротвердости. Измерения проводят не менее 2-3 раз. Числа твердости в таблице вычислены по формуле
и представляют числа твердости по Виккерсу. Прибор позволяет фотографировать микроструктуру сплава с полученными отпечатками.


Рис.6. Схема прибора ПМТ-3

ЗАДАНИЕ 1

    Изучить работу прибора для измерения твердости по Бринеллю.

    Определить твердость образцов из углеродистых конструкционных и инструментальных сталей, и сравнить полученные результаты.

    Перевести числа твердости по Бринеллю в числа твердости по Роквеллу.

    Сделать вывод о влиянии состава сплава на его твердость.

Протокол испытаний на твердость по методу Бринелля

Таблица 1

ЗАДАНИЕ 2

    Изучить работу прибора для измерения твердости по методу Роквелла.

    Определить твердость образцов стали в оттоженном состоянии и закаленном состоянии, сплавов цветных металлов и твердых сплавов.

    Результаты измерений внести в протокол испытаний.

    Сделать вывод о влиянии состава материала на его твердость.

ЗАДАНИЕ 3

    Изучить работу прибора для измерения твердости по методу Виккерса.

    Определить твердость образцов из малоуглеродистой стали после цементации, азотирования.

    Результаты измерений записать в протокол испытаний.

1. Цель работы.

2. Задание.

3. Описание методики проведения испытаний.

4. Протокол испытания на твердость.

5. Выводы по работе.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

    Что такое твердость материалов?

    Как измеряется твердость материалов?

    Определение твердости по Бринеллю; по Роквеллу; по Виккерсу.

    Обозначения твердости.

    Область применения методов определения твердости по Бринеллю; по Роквеллу и по Виккерсу.

ЛИТЕРАТУРА

    Геллер Ю. А. , Рахштадт Л. Г. Материаловедение. М.: Металлургия. 1975.- 345с.

    Самоходний А. И., Кунявский М. Н. Лабораторные работы по металловедению и термической обработки металлов. М.: Машиностроение. 1981.

    Советова Л.В., Гусев В.И. Руководство к лабораторной работе «Определение твердости материалов». Саратов, СПИ, 1982г.

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ МАТЕРИАЛОВ

Методические указания к учебно-исследовательской лабораторной работе для студентов всех специальностей

дневной, вечерней и заочной форм обучения

Составил:

Федоров Юлий Степанович

Твёрдость

Твёрдость - это способность материала сопротивляться проникновению в него другого, более твёрдого тела - индентора во всем диапазоне нагружения: от момента касания с поверхностью и до вдавливания на максимальную глубину. Существуют методы определения восстановленной и невосстановленной твёрдости.

Метод определения восстановленной твёрдости.

Твёрдость определяется как отношение величины нагрузки к площади поверхности, площади проекции или объему отпечатка. Различают поверхностную , проекционную и объемную твёрдость:

  • поверхностная твёрдость - отношение нагрузки к площади поверхности отпечатка;
  • проекционная твёрдость - отношение нагрузки к площади проекции отпечатка;
  • объёмная твёрдость - отношение нагрузки к объёму отпечатка.

Метод определения невосстановленной твёрдости.

Твёрдость определяется как отношение силы сопротивления к площади поверхности, площади проекции или объему внедренной в материал части индентора. Различают поверхностную , проекционную и объемную твёрдость:

  • поверхностная твёрдость - отношение силы сопротивления к площади поверхности внедренной в материал части индентора;
  • проекционная твёрдость - отношение силы сопротивления к площади проекции внедренной в материал части индентора;
  • объёмная твёрдость - отношение силы сопротивления к объёму внедренной в материал части индентора.

Твёрдость измеряют в трёх диапазонах: макро, микро, нано. Макродиапазон регламентирует величину нагрузки на индентор от 2 до 30 кН. Микродиапазон регламентирует величину нагрузки на индентор до 2 Н и глубину внедрения индентора больше 0,2 мкм . Нанодиапазон регламентирует только глубину внедрения индентора, которая должна быть меньше 0,2 мкм . Часто твердость в нанодиапазоне называют нанотвердостью (nanohardness) [неизвестный термин ] .

Измеряемая твердость, прежде всего, зависит от нагрузки, прикладываемой к индентору. Такая зависимость получила название размерного эффекта , в англоязычной литературе - indentation size effect . Характер зависимости твердости от нагрузки определяется формой индентора:

  • для сферического индентора - с увеличением нагрузки твердость увеличивается - обратный размерный эффект (reverse indentation size effect );
  • для индентора в виде пирамиды Виккерса или Берковича - с увеличением нагрузки твердость уменьшается - прямой или просто размерный эффект (indentation size effect );
  • для сфероконического индентора (типа конуса для твердомера Роквелла) - с увеличением нагрузки твердость сначала увеличивается, когда внедряется сферическая часть индентора, а затем начинает уменьшаться (для сфероконической части индентора).

Косвенно твердость также может зависеть от:

  1. Координационного числа - чем выше число, тем выше твёрдость.
  2. Природы химической связи
  3. От направления (например, минерал дистен - его твёрдость вдоль кристалла 4, а поперёк - 7)
  4. Гибкости - минерал легко гнётся, изгиб не выпрямляется (например, тальк)
  5. Упругости - минерал сгибается, но выпрямляется (например, слюды)
  6. Вязкости - минерал трудно сломать (например, жадеит)
  7. и ряда других физико-механических свойств материала.

Наиболее твёрдыми из существующих на сегодняшний день материалов являются две аллотропные модификации углерода - лонсдейлит , на 58 % превосходящий по твёрдости алмаз и фуллерит (примерно в 2 раза твёрже алмаза ). Однако практическое применение этих веществ пока маловероятно. Самым твёрдым из распространённых веществ является алмаз (10 единиц по шкале Мооса, см. ниже).

Методы измерения твёрдости

Прибор Польди

Методы определения твёрдости по способу приложения нагрузки делятся на: 1) статические и 2) динамические (ударные).

Для измерения твёрдости существует несколько шкал (методов измерения):

  • Метод Бринелля - твёрдость определяется по диаметру отпечатка, оставляемому металлическим шариком, вдавливаемым в поверхность. Твёрдость вычисляется как отношение усилия, приложенного к шарику, к площади отпечатка (причём площадь отпечатка берётся как площадь части сферы, а не как площадь круга (твердость по Мейеру)); размерность единиц твердости по Бринеллю МПа (кг-с/мм²). Число твердости по Бринеллю по ГОСТ 9012-59 записывают без единиц измерения. Твёрдость, определённая по этому методу, обозначается HB, где H = hardness (твёрдость, англ. ), B - Бринелль;
  • Метод Роквелла - твёрдость определяется по относительной глубине вдавливания металлического шарика или алмазного конуса в поверхность тестируемого материала. Твёрдость, определённая по этому методу, является безразмерной и обозначается HR, HRB, HRC и HRA; твёрдость вычисляется по формуле HR = 100 (130) − kd , где d - глубина вдавливания наконечника после снятия основной нагрузки, а k - коэффициент. Таким образом, максимальная твёрдость по Роквеллу по шкалам A и C составляет 100 единиц, а по шкале B - 130 единиц.
  • Метод Виккерса - твёрдость определяется по площади отпечатка, оставляемого четырёхгранной алмазной пирамидкой, вдавливаемой в поверхность. Твёрдость вычисляется как отношение нагрузки, приложенной к пирамидке, к площади отпечатка (причём площадь отпечатка берётся как площадь части поверхности пирамиды, а не как площадь ромба); размерность единиц твёрдости по Виккерсу кг-с/мм² . Твёрдость, определённая по этому методу, обозначается HV;
  • Методы Шора:
  • Дюрометры и шкалы Аскер - по принципу измерения соответствует методу вдавливания (по Шору). Фирменная и нац. японская модификация метода. Используется для мягких и эластичных материалов. Отличается от классического метода Шора некоторыми параметрами измерительного прибора, фирменными наименованиями шкал и инденторами .
Следует понимать, что хотя оба этих метода являются методами измерения твёрдости, предложены одним и тем же автором, имеют совпадающие названия и совпадающие обозначения шкал это - не версии одного метода, а два принципиально разных метода с разными значениями шкал, описываемых разными стандартами.

Методы измерения твёрдости делятся на две основные категории: статические методы определения твёрдости и динамические методы определения твёрдости.

Для инструментального определения твёрдости используются приборы, именуемые твердомерами. Методы определения твердости, в зависимости от степени воздействия на объект, могут относиться как к неразрушающим, так и к разрушающим методам.

Существующие методы определения твёрдости не отражают целиком какого-нибудь одного определённого фундаментального свойства материалов, поэтому не существует прямой взаимосвязи между разными шкалами и методами, но существуют приближенные таблицы, связывающие шкалы отдельных методов для определённых групп и категорий материалов. Данные таблицы построены только по результатам экспериментальных тестов и не существует теорий, позволяющих расчетным методом перейти от одного способа определения твердости к другому.

Конкретный способ определения твёрдости выбирается исходя из свойств материала, задач измерения, условий его проведения, имеющейся аппаратуры и др.

В СНГ стандартизированы не все шкалы твёрдости.

Нормативные документы

  • ГОСТ 8.062-85 «Государственная система обеспечения единства измерений. Государственный специальный эталон и государственная поверочная схема для средств измерений твердости по шкалам Бринелля»
  • ГЭТ 33-85 «Государственный специальный эталон единиц твердости по шкалам Бринелля»
  • ГОСТ 24621-91 (ISO 868-85) «Определение твёрдости при вдавливании с помощью дюрометра (твёрдость по Шору)».
  • ГОСТ 263-75 «Резина. Метод определения твёрдости по Шору А».
  • ГОСТ 23273-78 «Металлы и сплавы. Измерение твердости методом упругого отскока бойка (по Шору)».
  • ISO 2815 «Paints and varnishes - Buchholz indentation test».
  • DIN 53153 «Buchholz hardness».
  • ISO 14577 Metallic Materials. Instrumented indentation test for hardness and materials parameters. Part 1: Test method.

Примечания

Ссылки

  • Сравнительная таблица твёрдостей в разных шкалах. (Прим.: В таблице шкала Шора соответствует методу отскока.)

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Твёрдость" в других словарях:

    У этого термина существуют и другие значения, см. Твёрдость (значения). Твёрдость (также твёрдость характера, твёрдость воли) черта характера, характеризующаяся последовательностью и упорством в достижении целей или отстаивании взглядов.… … Википедия

    У этого термина существует и другое значение, см. Твёрдость по Шору. При этом следует понимать, что хотя в другом значении этот метод также является методом измерения твёрдости, оба метода предложены одним и тем же автором, имеют совпадающие… … Википедия

    твёрдость - и; ж. 1) к твёрдый 2), 3), 4), 5), 6), 7), 8), 9) Твёрдость древесины. Твёрдость духа. Твёрдость воли, характера, убеждений. Твёрдость памяти. Твёрдость решения. Твёрдость движений … Словарь многих выражений

    У этого термина существует и другое значение, см. Твёрдость по Шору. При этом следует понимать, что хотя в другом значении этот метод так же является методом измерения твёрдости, оба метода предложены одним и тем же автором, имеют совпадающие… … Википедия

    твёрдость по Мартенсу - склерометрическая твёрдость твёрдость по склероскопу — Тематики нефтегазовая промышленность Синонимы склерометрическая твёрдостьтвёрдость по склероскопу EN… … Справочник технического переводчика

    Сопротивление металлов вдавливанию. Т. м. не является физической постоянной, а представляет собой сложное свойство, зависящее как от прочности и пластичности, так и от метода измерения. Т. м. характеризуется числом твёрдости. Наиболее… …

    Твёрдость по Бринеллю - Бринелля метод [по имени шведского инженера Ю.А.Бринелля (J.A.Brinell)] способ определения твёрдости материалов вдавливанием в испытываемую поверхность стального закалённого шарика диаметром 2,5; 5 и 10 мм пр нагрузке P от 625 H до 30 кН. Число… … Металлургический словарь

    Твёрдость по Виккерсу - Виккерса метод [по названию английского военно промышленного концерна Виккерс (Vickers Limited)] способ определения твёрдости материалов вдавливанием в поверхность образца или изделия алмазного индентора имеющего форму правильной четырёхгранной … Металлургический словарь

    Твёрдость по Роквеллу - Роквелла метод [по имени американского металлурга С.Роквелла (S.Rockwell), разработавшего этод метод] способ определения твёрдости материалов (главным образом металлов) вдавливанием в испытываемую поверхность алмазного индентора с углом при… … Металлургический словарь

    Свойство минералов оказывать сопротивление проникновению в них др. тел. Твёрдость важный диагностический и типоморфный признак минерала, функция его состава и структуры, которые в различной мере отражают условия минералообразования. Т. м … Большая советская энциклопедия

Для того чтобы детали и механизмы служили длительно и надежно, материалы, из которых они изготовлены, должны соответствовать необходимым условиям работы. Именно поэтому важно контролировать допустимые значения их основных механических показателей. К механическим свойствам относятся твердость, прочность, пластичность. Твердость металлов - первичная конструкционная характеристика.

Понятие

Твердость металлов и сплавов - это свойство материала создавать сопротивление при проникновении в его поверхностные слои иного тела, которое не деформируется и не разрушается при сопутствующих нагрузках (индентора). Определяют с целью:

  • получения информации о допустимых конструкционных особенностях и о возможностях эксплуатации;
  • анализа состояния под действием времени;
  • контроля результатов температурной обработки.

От этого показателя частично зависят прочность и устойчивость поверхности к старению. Исследуют как исходный материал, так и уже готовые детали.

Варианты исследования

Показателем является величина, которая называется числом твердости. Существуют различные методы измерения твердости металлов. Наиболее точные исследования заключаются в использовании различных видов вычисления, инденторов и соответствующих твердомеров:

  1. Бринелля: суть работы аппарата - вдавливание шарика в исследуемый металл или сплав, вычисление диаметра отпечатка и последующее математическое вычисление механического параметра.
  2. Роквелла: используются шарик или алмазный конусный наконечник. Значение отображается на шкале или определяется расчётно.
  3. Виккерса: наиболее точное измерение твердости металла с применением алмазного пирамидального наконечника.

Для определения параметрических соответствий между показателями разных способов измерения для одного и того же материала существуют специальные формулы и таблицы.

Факторы, определяющие вариант измерения

В лабораторных условиях, при наличии необходимого ассортимента оборудования, выбор способа исследования осуществляется в зависимости от определенных характеристик заготовки.

  1. Ориентировочное значение механического параметра. Для конструкционных сталей и материалов с небольшой твердостью до 450-650 НВ применяют метод Бринелля; для инструментальных, легированных сталей и других сплавов - Роквелла; для твердосплавов - Виккерса.
  2. Размеры испытуемого образца. Особо маленькие и тонкие детали обследуются с помощью твердомера Виккерса.
  3. Толщина металла в месте замера, в частности, цементированного или азотированного слоя.

Все требования и соответствия задокументированы ГОСТом.

Особенности методики Бринелля

Испытания на твердость металлов и сплавов с помощью твердомера Бринелля проводятся со следующими особенностями:

  1. Индентор - шарик из легированной стали или из карбидо-вольфрамового сплава диаметром 1, 2, 2,5, 5 или 10 мм (гост 3722-81).
  2. Продолжительность статического вдавливания: для чугуна и стали - 10-15 с., для цветных сплавов - 30, также возможна длительность в а в некоторых случаях - 120 и 180 с.
  3. Граничное значение механического параметра: 450 НВ при измерении стальным шариком; 650 НВ при использовании твердосплава.
  4. Возможные нагрузки. С помощью входящих в комплект грузов корректируется фактическая сила деформации на испытуемый образец. Их минимальные допустимые значения: 153,2, 187,5, 250 Н; максимальные - 9807, 14710, 29420 Н (гост 23677-79).

С помощью формул, в зависимости от диаметра выбранного шарика и от испытуемого материала, можно вычислить соответствующее допустимое усилие вдавливания.

Пример обозначения:

400HB10/1500/20, где 400HB - твердость металла по Бринеллю; 10 - диаметр шарика, 10 мм; 1500 - статическая нагрузка, 1500 кгс; 20 - период осуществления вдавливания, 20 с.

Для установления точных цифр рационально исследовать один и тот же образец в нескольких местах, а общий результат определять путем нахождения среднего значения из полученных.

Определение твердости по методу Бринелля

Процесс исследования протекает в следующей последовательности:

  1. Проверка детали на соответствие требованиям (ГОСТ 9012-59, гост 2789).
  2. Выбор необходимого шарика, определение возможного усилия, установка грузов для его формирования, периода вдавливания.
  3. Запуск твердомера и деформация образца.
  4. Измерение диаметра углубления.
  5. Эмпирическое вычисление.

где F - нагрузка, кгс или Н; A - площадь отпечатка, мм 2 .

НВ=(0,102*F)/(π*D*h),

где D - диаметр шарика, мм; h - глубина отпечатка, мм.

Твердость металлов, измеренная этим способом, имеет эмпирическую связь с вычислением параметров прочности. Метод точен, особенно для мягких сплавов. Является основополагающим в системах определения значений этого механического свойства.

Особенности методики Роквелла

Этот способ измерения был изобретен в 20-х годах XX века, более автоматизирован, чем предыдущий. Применяется для более твердых материалов. Основные его характеристики (ГОСТ 9013-59; гост 23677-79):

  1. Наличие первичной нагрузки в 10 кгс.
  2. Период выдержки: 10-60 с.
  3. Граничные значения возможных показателей: HRA: 20-88; HRB: 20-100; HRC: 20-70.
  4. Число визуализируется на циферблате твердомера, также может рассчитываться арифметически.
  5. Шкалы и инденторы. Известно 11 различных шкал в зависимости от типа индентора и предельно-допустимой статической нагрузки. Наиболее распространённые в использовании: А, В и С.

А: алмазный конусный наконечник, угол при вершине 120˚, общая допустимая сила статического влияния - 60 кгс, HRA; исследуются тонкие изделия, в основном прокат.

С: также алмазный конус, рассчитанный на максимальное усилие 150 кгс, HRC, применим для твердых и закаленных материалов.

В: шарик размером 1,588 мм, изготовленный из закаленной стали или из твердого карбидо-вольфрамового сплава, нагрузка - 100 кгс, HRB, используется для оценки твердости отожжённых изделий.

Шарикообразный наконечник (1,588 мм) применим для шкал Роквелла B, F, G. Также существуют шкалы E, H, K, для которых используется шарик диаметром 3,175 мм (ГОСТ 9013-59).

Количество проб, проделанных с помощью твердомера Роквелла на одной площади, ограничивается размером детали. Допускается повторная проба на расстоянии 3-4 диаметра от предыдущего места деформации. Толщина испытуемого изделия также регламентируется. Она должна быть не меньше увеличенной в 10 раз глубины внедрения наконечника.

Пример обозначения:

50HRC - твердость металла по Роквеллу, измерена с помощью алмазного наконечника, ее число равно 50.

План исследования по методу Роквелла

Измерение твердости металла более упрощено, нежели для

  1. Оценка размеров и характеристик поверхности детали.
  2. Проверка исправности аппарата.
  3. Определение типа наконечника и допустимой нагрузки.
  4. Установка образца.
  5. Осуществление первичного усилия на материал, величиной в 10 кгс.
  6. Осуществление полного соответствующего усилия.
  7. Чтение полученного числа на шкале циферблата.

Также возможен математический расчет с целью точного определения механического параметра.

При условии использования алмазного конуса с нагрузкой 60 или 150 кгс:

HR=100-((H-h)/0,002;

при совершении испытания с помощью шарика под усилием 100 кгс:

HR=130-((H-h)/0,002,

где h - глубина внедрения индентора при первичном усилии 10 кгс; H - глубина внедрения индентора при полной нагрузке; 0,002 - коэффициент, регламентирующий величину перемещения наконечника при изменении числа твердости на 1 единицу.

Является простым, но недостаточно точным. В то же время он позволяет измерять показатели механического свойства для твердых металлов и сплавов.

Характеристики методики Виккерса

Определение твердости металлов по данному способу наиболее просто и точно. Работа твердомера основана на вдавливании в образец алмазного пирамидального наконечника.

Основные особенности:

  1. Индентор: алмазная пирамида с углом при вершине 136°.
  2. Предельно допустимая нагрузка: для и стали - 5-100 кгс; для медных сплавов - 2,5-50 кгс; для алюминия и сплавов на его основе - 1-100 кгс.
  3. Период выдержки статической нагрузки: от 10 до 15 с.
  4. Испытуемые материалы: сталь и с твердостью более 450-500 НВ, в том числе изделия после химико-термической обработки.

Пример обозначения:

где 700HV - число твердости по Виккерсу; 20 - нагрузка, 20 кгс; 15 - период статического усилия, 15 с.

Последовательность исследования Виккерса

Порядок действий предельно упрощен.

  1. Проверка образца и аппаратуры. Особое внимание уделяется поверхности детали.
  2. Выбор допустимого усилия.
  3. Установка испытуемого материала.
  4. Запуск твердомера в работу.
  5. Чтение результата на циферблате.

Математический расчет по этому способу выглядит следующим образом:

HV=1,8544*(F/d 2),

где F - нагрузка, кгс; d - среднее значение длин диагоналей отпечатка, мм.

Он позволяет измерять высокую твердость металлов, тонких и небольших деталей, при этом предоставляя высокую точность результата.

Способы перехода между шкалами

Определив диаметр отпечатка с помощью специального оборудования, можно с помощью таблиц определить твердость. Таблица твердости металлов - проверенный помощник в вычислении данного механического параметра. Так, если известно значение по Бринеллю, можно легко определить соответствующее число Виккерса или Роквелла.

Пример некоторых значений соответствия:

Диаметр отпечатка,

Метод исследования

Бринелля

Роквелла

Виккерса

Таблица твердости металлов составлена на основе экспериментальных данных и имеет высокую точность. Также существуют графические зависимости твердости по Бринеллю от содержания углерода в железоуглеродистом сплаве. Так, в соответствии с такими зависимостями, для стали с количеством карбона в составе равному 0,2% она составляет 130 НВ.

Требования к образцу

В соответствии с требованиями ГОСТов, испытуемые детали должны соответствовать следующим характеристикам:

  1. Заготовка должна быть ровная, твердо лежать на столе твердомера, ее края должны быть гладкими или тщательно обработаны.
  2. Поверхность должна иметь минимальную шероховатость. Должна быть отшлифована и очищена, в том числе с помощью химических составов. Одновременно, во время процессов механической обработки, важно предупредить образование наклепа и повышения температуры обрабатываемого слоя.
  3. Деталь должна соответствовать выбранному методу определения твердости по параметрическим свойствам.

Выполнение первичных требований - обязательное условие точности измерений.

Твердость металлов - важное основополагающее механическое свойство, определяющее их некоторые остальные механические и технологические особенности, результаты предыдущих процессов обработки, влияние временных факторов, возможные условия эксплуатации. Выбор методики исследования зависит от ориентировочных характеристик образца, его параметров и химического состава.

Твердость – свойство металла оказывать сопротивление проникновению в него другого более твердого тела, минимум в 10 раз. Для определения твердости применяют: методы Бриннеля, Роквелла и Виккерса.

Метод Бриннеля : в испытуемый материал под определенной нагрузкой вдавливают стальной закаленный шарик определенного диаметра и по величине диаметра шарового отпечатка судят о тверости. Отпечаток имеет вид шарового сегмента. Твердость по Бриннелю (НВ) определяют из выражения НВ=Р/F, где Р – нагрузка, F – площадь поверхности шарового отпечатка. К недостаткам метода Б. необходимо отнести невозможность испытания металлов, имеющих твердость меньше 450 МПа или толщину больше 2 мм. При испытании с твердостью более 450 МПа возможна деформация шарика и результаты будут неточными.

Метод Роквелла : основан на том, что в испытуемый образец вдавливается алмазный конус с углом при вершине 120 о или закаленный стальной шарик диаметром 1,59 мм. Алмазный конус – для твердых, шарик – для мягких металлов. Шарик/алмазный конус вдавливают в испытуемый образец под действием двух последовательно прилагаемых нагрузок – предварительной (0,1 кН) и основной. Соответственно с этими нагрузками на индикаторе прибора нанесены шкалы: черные А и С и красные В. Шкала А – измерение твердости изделий с очень твердым поверхностным слоем; шкала С – для измерения твердости закаленных сталей; шкала В – незакаленные стали, цветные металлы и сплавы, имеющие твердость HRB 100. Метод Р. отличается простотой и высокой скоростью измерения, обеспечивает сохранение качественной поверхности после испытаний, позволяет испытывать металлы как низкой, так и высокой твердости, при толщине изделий до 0,8 мм. Этот метод не рекомендуется применять для сплавов с неоднородной структурой (чугуны серые, ковкие и высокопрочные).

Метод Виккреса : прибором ТП-2 (типа Виккерса) можно испытывать твердость изделий толщиной 0,15 мм и выше, а также поверхностные слои металла практически из любых материалов. Измерение методом В. заключается во вдавливании под нагрузкой в испытуемое изделие в течение определенного времени наконечника в виде правильной четырехгранной алмазной пирамиды. Определение твердости на приборе ТП-2 : получение отпечатка, оптическое измерение отпечатка, определение числа твердости. При определении твердости должны быть соблюдены следующие правила: нагрузка до необходимого значения должна возрастать плавно; поверхность испытуемого образца должна быть блестящей и не иметь посторонних включений; поверхность образца должна быть сухой и чистой; наконечник должен быть перпендикулярен к поверхности образца.

Твердость - это сопротивление материала проникновению в его поверхность стандартного тела (индентора), не деформирующегося при испытании.

Это неразрушающий метод контроля, основной способ оценки качества термической обработки изделия. О твердости судят либо по глубине проникновения индентора (метод Роквелла), либо по величине отпечатка от вдавливания (методы Бринелля , Виккерса , микротвердости).

Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость. Схемы испытаний представлены на рис. 1.

Рис. 1. Схемы определения твердости: а - по Бринеллю; б - по Роквеллу; в - по Виккерсу

В результате вдавливания с достаточно большой нагрузкой поверхностные слои материала, находящиеся под наконечником и вбли-зи него, пластически 5 деформируются. После снятия нагрузки остается отпечаток. Особенность происходящей при этом деформа-ции заключается в том, что она протекает только в небольшом объеме, окруженном недеформированным материалом.

В таких условиях возникают главным образом касательные напряжения, а доля растягивающих напряжений незначительна по сравнению с получаемыми при других видах механических испытаний (на растяжение, изгиб, кручение, сжатие). Поэтому при измерении твердости вдавливанием пластиче-скую деформацию испытывают не только пластичные, но также металлы (например, чугун), которые при обычных механических испытаниях (на растяжение, сжатие, кручение, изгиб) разрушаются практически без пластической деформа-ции.

Таким образом, твердость характеризует сопротивление пласти-ческой деформации и представляет собой механическое свойство ма-териала, отличающееся от других его механических свойств, способом измерения.

Преимущества измерения твердости следующие:

1. Между твердостью пластичных металлов, определяемой спо-собом вдавливания, и другими механическими свойствами (главным образом пределом прочности), существует количественная зависимость. Так, сосредоточенная пла-стическая деформация металлов (при образовании шейки) аналогична деформации, создавае-мой в поверхностных слоях металла при измерении твердости вдавли-ванием наконечника.

Подобная количественная зависимость не наблюдается для хруп-ких материалов, которые при испытаниях на растяжение (или сжа-тие, изгиб, кручение) разрушаются без заметной пластической дефор-мации, а при измерении твердости получают пластическую деформа-цию. Однако в ряде случаев и для этих металлов (например, серых чугунов) наблюдается качественная зависимость между пределом прочности и твердостью; возрастанию твердости обычно соответствует увеличение предела прочности на сжатие.


По значениям твердости можно определять также и некоторые пластические свойства металлов. Твердость, определенная вдавливанием, характеризует также предел выносливости некоторых металлов, в частности меди, дуралюмина и сталей в отожженном состоянии.

2. Измерение твердости по технике выполнения значительно проще, чем определение прочности, пластичности и вязкости. Испытания твердости не требуют изготовления специальных образцов и выполняются непосредственно на проверяемых деталях после за-чистки на поверхности ровной горизонтальной площадки, а иногда даже и без такой подготовки.

Измерения твердости выполняются быстро.

3. Измерение твердости обычно не влечет за собой разрушения проверяемой детали, и после измерения её можно использовать по своему назначению, в то время как для определения прочности, пластичности и вязкости необходимо изготовление специальных об-разцов.

4. Твердость можно измерять на деталях небольшой толщины, а также в очень тонких слоях, не превышающих (для некоторых спо-собов измерения твердости) десятых долей миллиметра, или в микро-объемах металла; в последнем случае измерения проводят способом микротвердости. Поэтому многие способы измерения твердости пригодны для оценки различных по структуре и свойствам слоев металла, например поверхностного слоя цементованной, азотирован-ной или закаленной стали, имеющей разную твердость по сечению детали. Методом определения микротвердости можно также измерять твердость отдельных составляющих в сплавах.

Следует различать два способа определения твердости вдавлива-нием: измерение макротвёрдости и измерение микротвер-дости.

Измерение макротвердости отличается тем, что в испытуемый материал вдавливается тело, прони-кающее на сравнительно большую глубину, ависящую от величины прилагаемой нагрузки и свойств металла. Кроме того, во многих испытаниях вдавливается тело значительных размеров, например стальной шарик диаметром 10 мм, в результате чего в де-формируемом объёме оказываются представленными все фазы и струк-турные составляющие сплава. Измеренная твердость в этом случае характеризует твердость всего испытуемого материала.

Выбор формы, размеров наконечника и величины нагрузки зави-сит от целей испытания, структуры, ожидаемых свойств, состояния поверхности и размеров испытуемого образца. Если металл имеет гетерогенную структуру с крупными выделе-ниями отдельных структурных составляющих, различных по свой-ствам (например, серый чугун, цветные подшипниковые сплавы), то для испытания твердости следует выбирать шарик большого диа-метра.

Если же металл имеет сравнительно мелкую и однородную структуру, то малые по объёму участки испытуемого металла могут быть достаточно характерными для оценки его твёрдости. В этих случаях испытания можно про-водить вдавливанием тела меньшего размера, например алмазного конуса или пирамиды, и на меньшую глубину, и, следовательно, при небольшой нагрузке.

При испытании металлов с высокой твердостью, например зака-ленной или низкоотпущенной стали, приведенное условие является даже обязательным, поскольку вдавливание стального шарика или алмаза с большой нагрузкой может вызвать деформацию шарика или скалывание алмаза.

Однако значительное снижение нагрузки нежелательно, так как это приведет к резкому уменьшению деформируемого объёма и может дать значения, не характерные для основной массы металла. Поэтому величины нагрузок и размеры получаемых в материалах отпечатков не должны быть меньше некоторых определенных пределов.

Измерение микротвёрдости имеет целью определить твёрдость отдельных зерен, фаз и структурных составляющих сплава (а не «усредненную» твёрдость, как при измерении макротвёрдости). В данном случае объём, деформируемый вдавливанием, должен быть меньше объёма (площади) измеряемого зерна. Поэтому прилагаемая нагрузка выбирается небольшой. Кроме того, микротвёрдость изме-ряют для характеристики свойств очень малых по размерам деталей.

Значительное влияние на результаты испытаний твёрдости оказы-вает состояние поверхности измеряемого материала. Если поверх-ность неровная — криволинейная или с выступами, то отдельные уча-стки в различной степени участвуют в сопротивлении вдавливанию и деформации, что приводит к ошибкам в измерении. Чем меньше нагрузка для вдавливания, тем более тщательно должна быть подго-товлена поверхность. Она должна представлять шлифованную гори-зонтальную площадку, а для измерения микротвердости — полиро-ванную.

Измеряемая поверхность должна быть установлена горизон-тально, т. е. перпендикулярно действию вдавливаемого тела. Проти-воположная сторона образца также должна быть зачищена, и не иметь окалины, так как последняя при нагружении образца сминается, что искажает результаты измерения.

Для приблизительнойердости удобно пользоваться шкалой Мооса - набором из 10 минералов, расположенных по возрастанию твердости:

Тальк - 1 Полевой шпат - 6

Гипс - 2 Кварц - 7

Кальцит - 3 Топаз - 8

Флюорит - 4 Корунд - 9

Апатит - 5 Алмаз - 10

Метод измерения твёрдости вдавливанием шарика (твердость по Бринеллю)

Этот способ универсальный и используется для определения твердости практически всех материалов.

В материал вдавливается стальной шарик, и значения твердости определяют по величине поверхности отпечатка, оставляемого шари-ком. Шарик вдавливают с помощью пресса.

Рис.2. Схема прибора для получе-ния твердости вдавливанием шарика (измерение по Бринеллю): 1 - столик для центровки образца; 2 — маховик; 3 — грузы; 4 — шарик; 5 — электродвигатель.

Испытуемый образец устанавливают на столике 1 в ниж-ней части неподвижной станины пресса (рис. 2), зашлифованной поверхностью кверху. Поворотом вручную маховика 2по часовой стрелке столик поднимают так, чтобы шарик мог вдавиться в испытуемую поверхность. В прессах с электродвигателем вращают маховик 2 до упора и нажатием кнопки включают двигатель 5.

Последний перемещает коромысло и постепенно вдавливает шарик под действием нагрузки, сообщаемой привешенным к коро-мыслу грузом. Эта нагрузка дейст-вует в течение определенного вре-мени, обычно 10-60 с, в зависимо-сти от твердости измеряемого мате-риала, после чего вал двигателя, вращаясь в обратную сторону, соответственно перемещает коромысло и снимает нагрузку. По-сле автоматического выключения двигателя, поворачивая маховик 2против часовой стрелки, опускают столик прибора и затем снимают об-разец.

В образце остается отпечаток со сферической поверхностью (лун-ка). Диаметр отпечатка измеряют лупой, на окуляре которой нанесена шкала с делениями, соответствующими десятым долям миллиметра. Диаметр отпечатка змеряют с точностью до 0,05 мм (при вдавливании шарика диаметром 10 и 5 (мм) в двух взаимно пер-пендикулярных направлениях; для определения твердости следует принимать среднюю из полученных величин.

Число твердости по Бринеллю НВ вычисляют по уравнению:

где Р — нагрузка на шарик, кг · с (1кг · с - 0,1 Мпа); D — диаметр вдавливаемого шарика, мм; d — диаметр отпечатка, мм. Получаемое число твердости при прочих равных условиях тем выше, чем меньше диаметр отпечатка.

Однако получение постоянной и одинаковой зависимости между Р и d, необходимое для точного определения твердости, достигается только при соблюдении определенных условий. При вдавливании шарика на разную глубину, т. е. с разной нагрузкой для одного и того же мате-риала, не соблюдается закон подобия между получаемыми диамет-рами отпечатка.

Наибольшие отклонения наблюдаются, если шарик вдавливается с малой нагрузкой и оставляет отпечаток небольшого диаметра или вдавливается с очень большой нагрузкой и оставляет отпечаток с диаметром близким к диа-метру шарика. Поэтому твердость материалов измеряют при постоянном соотно-шении между величиной нагрузки Ри квадратом диаметра шарика D 2 . Это соотношение должно быть различным для материалов разной твер-дости.

В процессе вдавливания наряду с пластической деформацией измеряемого материала происходит также упругая деформация вдавли-ваемого шарика. Величина этой деформации, искажающей результаты определения, возрастает при измерении твердых материалов. По-этому испытания вдавливанием шарика ограничивают измерением металлов небольшой и средней твердости (для стали с твердостью не более НВ = 450).

Известное влияние оказывает также длительность выдержки металла под нагрузкой. Легкоплавкие металлы (свинец, цинк, баб-биты), имеющие низкую температуру рекристаллизации, испытывают пластическую деформацию не только в момент вдавливания, но и в течение некоторого времени после приложения нагрузки. С увели-чением выдержки под нагрузкой пластическая деформация этих металлов практически стабилизируется.

Для металлов с высокими температурами плавления влияние продолжительности выдержки под нагрузкой незначительно, что позво-ляет применять более короткие выдержки (10-30 с).

При измерении твердости шариком определенного диаметра и с установленными нагрузками на практике пользуются заранее составленными таблицами, указывающими число НВ в зависимости от диа-метра отпечатка и соотношения между нагрузкой Ри поверхностью отпечатка F. При указании твердости НВ иногда отмечают принятые нагрузку и диаметр шарика.

Между пределом прочности и числом твердости НВ различных ме-таллов существует следующая зависимость:

Сталь с твердостью НВ :

120-175 s b » 0,34 HВ

175-450 s b » 0,35 HВ

Медь, латунь, бронза :

Отожженная s b » 0,55 HВ

Наклепанная s b » 0,40 HВ

Алюминий и алюминиевые сплавы с твер-достью НВ :

20 - 45 s b » (0,33 - 0,36) НВ

Дуралюмин :

Отожженный s b » 0,36 HВ

После закалки и старения s b » 0,35 HВ