Что получается когда кипит вода. Процесс кипения. Кипячение воды в микроволновой печи

Что получается когда кипит вода. Процесс кипения. Кипячение воды в микроволновой печи

Процесс кипения – подразумевает в себе переход жидкого вещества в состояние газообразного. Разница между испарением будет в том, что случается это при взаимосвязи с определенными показателями, куда входят не только показатели температуры, но и давления. Быстрота наступления кипения находится целиком во взаимосвязи с молекулами, которые от нагрева начинают чаще сталкиваться друг с другом. Если взять обычные условия, то температурой кипения считается нагревание в 100 градусов Цельсия, но на самом деле это диапазон величин, который зависит, как от непосредственно жидкости, а также давления снаружи и внутри воды. Если обобщить, то этот диапазон имеет величины от 70, на очень высокой горе, до 110, если находится ближе к уровню моря.

Температура пара кипящей воды в чайнике

Пар это и есть жидкость, только ее состояние переходит в газообразный вид. При взаимодействии с воздухом, он, как и прочие газообразные вещества, может воздействовать на него давлением. Во время парообразования, температура пара и жидкости будут постоянны до момента, когда жидкость не окажется испарена. Случается это в связи с тем, что вся сила температуры уходит на образование пара. Такая ситуация способствует образованию сухого насыщенного пара.

Важно знать! Когда кипит жидкость, пар имеет идентичные с ней градусы. Горячее, чем сама жидкость, получится получать пар исключительно с применением специальных приспособлений. Градусы, требуемые для закипания обычной жидкости, имеют величину в 100 градусов Цельсия.

При какой температуре закипает соленая вода

Соленую воду до кипения довести, возможно, только более высокими температурами, нежели в случае с обычной. В составе соленой же имеется набор ионов, которыми заполнены пространственные промежутки водных молекул. Из-за этого происходит гидратация, когда ионы соли соединяются с молекулами жидкости. Так как после гидратации связь молекул становится ощутимо сильней, соответственно процесс парообразования длится дольше.

За счет нагрева, соленая вода постоянно теряет молекулы, соответственно их сталкивание будет значительно реже. Для закипания потребуется больше времени, чем этого потребует пресная вода. Температуру, с которой можно сделать из соленой воды кипяток, в среднем, можно добавить на 10 градусов Цельсия выше, чем у обычной.

Градус закипания дистиллированной воды

Дистиллированный вид представляет собой очищенную жидкость, которая практически не содержит в себе примеси. Как правило, она предназначена для технического, медицинского и исследовательского применения.

Внимание! Употреблять ее в пищу и готовить на ней еду строго не рекомендуется.

Вода делается при помощи специального оборудования-дистиллятора, где пресная вода выпаривается, а пар конденсирует. По окончании дистилляции примеси будут оставаться вне жидкости.

Дистиллированный вид кипит точно также как и пресная с водопроводной — 100 градусах Цельсия. Есть небольшое отличие, что дистиллированная жидкость дойдет до кипения быстрее, однако эта разница совсем незначительна.

Как влияет давление на процесс закипания воды

Давление несет в себе существенную разницу для кипения жидкости. При этом играет роль атмосферное давление и давление внутри воды. К примеру, если поставить на огонь воду, находясь на большой высоте, то для закипания будет достаточно 70 градусов Цельсия. В условиях гор приготовление пищи несет определенные сложности. На это уходит более длительное время, так как кипяток не будет достаточно горячим. К примеру, попытка приготовления вареного яйца закончится неудачей, не говоря уже о вареном мясе, которое требует хорошую термическую обработку.

Важно! Не стоит принимать в пищу что-либо, что не прошло термическую обработку или хорошо не проварено. Особенно если дело касается походов и прочих вылазок на природу. Нужно заранее предусмотреть подобные нюансы и застраховать себя от возможных неожиданностей.

Находясь возле моря, температура кипения всегда будет равна 100 градусам. Подымаясь в горы, на пройденные 300 метров вверх температура для закипания будет снижаться на 1 градус. Поэтому жителям, чьи дома находятся на возвышениях, рекомендуют пользоваться автоклавами для кипячения жидкости, чтобы она получалась более горячей.

Внимание! Данную информацию обязательно должны знать работники медицинских учреждений и лабораторий.

Ведь известно, чтобы стерилизовать продукты и приборы требуется температура от 100 градусов и выше. В противном случае инструмент и прочие приспособления не будут стерильными, что впоследствии может принести массу осложнений.

Известно, что наиболее высокий градус воды все еще не обнаружили. Это следствие того, что она может расти до момента, пока не будет предела по атмосферному давлению, вернее, его росту. Паровые турбины разогревают воду до 400 градусов, при этом она не закипает, а давление соблюдается в 30-40 атмосфер.

Процесс закипания воды достаточно интересный и в то же время очень сложный процесс. Кипение - это процесс, при котором вещество (в данном случае вода) переходит из жидкого состояния в газообразное. Чтобы вода закипела, нужна подходящая температура, иначе процесс не запустится. В обычных условиях температура закипания воды равняется 100 градусам по Цельсию. Именно при такой температуре вода примется превращаться в газ.

Как закипает вода

Как только вода достигнет отметки в 100 градусов, жидкость начнет превращаться в пар. Чтобы легче было представить весь процесс преобразования, наберите в небольшую металлическую кастрюлю воды и поставьте на огонь. Вот что будет происходить:

  • вода в кастрюле начнет нагреваться;
  • при достижении температуры воды в 100 градусов, на самом дне кастрюли начнут образовываться пузырьки с паром;
  • дойдя на поверхности, эти пузырьки лопаются, выпуская пар на свободу;
  • количество воды в кастрюле будет постепенно уменьшаться.

Таким образом, через какое-то определенное время, вода в кастрюле полностью исчезнет, превратившись в пар. Кстати, не стоит путать кипение и испарение, эти процессы различаются между собой. Испарение может происходить при любой температуре, в то время как кипение лишь при определенной. Также процесс кипения происходит по всей жидкости, а при испарение вода превращаться в пар, начиная с поверхности воды. При испарении жидкость постепенно будет охлаждаться.

Какие еще условия влияют на процесс кипения

На самом деле кипение может происходить и при более низких или высоких температурах, чем 100 градусов. По мимо температуры, не менее важное место занимает давление. Так к примеру если мы начнем подниматься в горы, давление будет уменьшаться, следовательно и температура кипения будет уменьшаться. Если же мы будем спускаться в глубокую шахту, давление будет расти, следовательно температура кипения тоже будет расти. По мимо давления так же важно, чтобы вода постоянно подогревалась, иначе температура упадет и процесс остановится.

Если вас спросят, при какой температуре закипает вода, вы скорее всего ответите, что при 100 °C. И ваш ответ будет правильным, но это значение верно только при обычном атмосферном давлении – 760 мм рт. ст. На самом деле вода может закипать и при 80 °C, и при 130 °C. Чтобы объяснить причину таких расхождений, прежде всего нужно выяснить, что такое кипение.

Разобраться, сколько нужно градусов, чтобы вода закипела, поможет изучение механизма этого физического явления. Кипение представляет собой процесс преобразования жидкости в пар и проходит в несколько этапов:

  1. При нагревании жидкости из микротрещин в стенках сосуда выходят пузырьки с воздухом и водяным паром.
  2. Пузыри немного расширяются, но жидкость в сосуде настолько холодна, что это приводит к конденсации пара в пузырях.
  3. Пузырьки начинают лопаться до тех пор, пока вся толща жидкости не станет достаточно горячей.
  4. Через некоторое время происходит уравнивание давления воды и пара в пузырях. На этом этапе отдельные пузырьки могут подниматься на поверхность и выпускать пар.
  5. Пузырьки начинают интенсивно подниматься, начинается бурление с характерным звуком. Начиная с этого этапа, температура в сосуде не меняется.
  6. Процесс кипения будет продолжаться до тех пор, пока вся жидкость не перейдет в газообразное состояние.

Температура пара

Температура пара при кипении воды такая же, как и самой воды. Это значение не будет меняться до тех пор, пока не испарится вся жидкость в сосуде. В процессе кипения образуется влажный пар. Он насыщен жидкими частицами, равномерно распределенными по всему объему газа. Далее высокодисперсные частицы жидкости конденсируются, а насыщенный пар превращается в сухой.

Также существует перегретый пар, который намного горячее, чем кипяток. Но его можно получить только с помощью специальной аппаратуры.

Влияние давления

Мы уже выяснили, что для закипания жидкости необходимо уравнивание давления жидкого вещества и пара. Так как давление воды складывается из атмосферного давления и давления самой жидкости, изменить время закипания можно двумя способами:

  • изменением атмосферного давления;
  • изменением давления в самом сосуде.

Первый случай мы можем наблюдать на территориях, расположенных на разной высоте над уровнем моря. На побережьях температура закипания будет составлять 100 °C, а на вершине Эвереста – всего 68 °C. Исследователи рассчитали, что при подъеме в горы каждые 300 метров температура закипания воды снижается на 1 °C.

Данные значения могут меняться в зависимости от химического состава воды и наличия примесей (солей, ионов металлов, растворимых газов).

Для получения кипятка чаще всего используют чайники. Температура кипения воды в чайнике также зависит от района проживания. Жителям горной местности рекомендуется использовать автоклавы и скороварки, которые помогают сделать кипяток более горячим и ускорить процесс приготовления пищи.

Кипение соленой воды

То, при скольких градусах закипает вода, определяет и наличие в ней примесей. В составе морской воды присутствуют ионы натрия и хлора. Они располагаются между молекулами H2O и притягивают их. Этот процесс известен как гидратация.

Связь между водой и ионами соли намного сильнее, чем между молекулами воды. Для закипания соленой воды требуется больше энергии, чтобы можно было разорвать эти связи. Этой энергией является температура.

Также соленая жидкость отличается от пресной низкой концентрацией молекул H2O. В этом случае при нагревании они начинают быстрее двигаться, но не могут образовать достаточно большой пузырь пара, так как реже сталкиваются. Давления маленьких пузырьков недостаточно для их выхода на поверхность.

Для уравнивания водного и атмосферного давления нужно увеличить температуру. Поэтому соленой воде для закипания требуется намного больше времени, чем пресной, а температура кипения будет зависеть от концентрации соли. Известно, что при добавлении 60 г NaCl в 1 л жидкости температура закипания возрастает на 10 °C.

Как изменить температуру кипения

В горной местности очень тяжело приготовить пищу, на это уходит слишком много времени. Причина – недостаточно горячий кипяток. На очень больших высотах почти невозможно сварить яйцо, что уж говорить о приготовлении мяса, которое нуждается в хорошей термической обработке.

Изменение температуры, при которой закипает жидкость, важна для жителей не только горных районов.

Для стерилизации продуктов и оборудования желательно использовать более высокую температуру, чем 100 °C, так как некоторые микроорганизмы являются термостойкими.

Это важная информация не только для домохозяек, но и для специалистов, работающих в лабораториях. Также увеличение температуры кипения может заметно сэкономить время, уходящее на приготовление пищи, что немаловажно в наше время.

Чтобы увеличить этот показатель, нужно использовать плотно закрывающуюся емкость. Лучше всего для этого подойдут скороварки, в которых крышка не пропускает пар, увеличивая давление внутри сосуда. Во время нагревания выделяется пар, но, так как он не может выйти наружу, происходит его конденсация на внутренней стороне крышки. Это приводит к существенному увеличению внутреннего давления. В автоклавах давление составляет 1–2 атмосферы, поэтому жидкость в них закипает при температуре 120–130 °C.

Максимальная температура кипения воды до сих пор остается неизвестной, так как этот показатель может увеличиваться до тех пор, пока увеличивается атмосферное давление. Известно, что в паровых турбинах вода не может закипеть даже при 400 °C и давлении в несколько десятков атмосфер. Такие же данные получили на больших глубинах океана.

Кипение воды при пониженном давлении: Видео





























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Ход урока

1.Стадии кипения воды.

Кипение – переход жидкости в пар, происходящий с образованием в объеме жидкости пузырьков пара или паровых полостей. Пузырьки растут вследствие испарения в них жидкости, всплывают, и содержащийся в пузырьках насыщенный пар переходит в паровую фазу над жидкостью.

Кипение начинается, когда при нагреве жидкости давление насыщенного пара над её поверхностью становится равным внешнему давлению. Температура, при которой происходит кипение жидкости, находящейся под постоянным давлением, называется температурой кипения (Ткип). Для каждой жидкости температура кипения имеет свое значение и в стационарном процессе кипения не меняется.

Строго говоря, Ткип соответствует температуре насыщенного пара (температуре насыщения) над плоской поверхностью кипящей жидкости, так как сама жидкость всегда несколько перегрета относительно Ткип. При стационарном кипении температура кипящей жидкости не меняется. С ростом давления Ткип увеличивается

1.1.Классификация процессов кипения.

Кипение классифицируют по следующим признакам:

пузырьковое и пленочное.

Кипение, при котором пар образуется в виде периодически зарождающихся и растущих пузырей, называется пузырьковым кипением. При медленном пузырьковом кипении в жидкости (а точнее, на стенках или на дне сосуда) появляются пузырьки, наполненные паром.

При увеличении теплового потока до некоторой критической величины отдельные пузырьки сливаются, образуя у стенки сосуда сплошной паровой слой, периодически прорывающиеся в объём жидкости. Такой режим называется плёночным.

Если температура дна сосуда значительно превышает температуру кипения жидкости, то скорость образования пузырей на дне становится столь большой, что они объединяются вместе, образуя сплошную паровую прослойку между дном сосуда и непосредственно самой жидкостью. В этом режиме плёночного кипения тепловой поток от нагревателя к жидкости резко падает (паровая плёнка проводит тепло хуже, чем конвекция в жидкости), и в результате скорость выкипания уменьшается. Режим плёночного кипения можно наблюдать на примере капли воды на раскалённой плите.

по виду конвекции у поверхности теплообмена? при свободной и вынужденной конвекции;

При нагревании вода ведет себя неподвижно, и теплота от нижних слоев к верхним передается посредством теплопроводности. По мере нагревания, однако, характер теплопередачи меняется, поскольку запускается процесс, который принято называть конвекцией. Нагреваясь вблизи дна, вода расширяется. Соответственно, удельный вес придонной разогретой воды оказывается легче, чем вес равного объема воды в поверхностных слоях. Это приводит всю водную систему внутри кастрюли в нестабильное состояние, которое компенсируется за счет того, что горячая вода начинает всплывать к поверхности, а на ее место опускается более прохладная вода. Это свободная конвекция. При вынужденной конвекции теплообмен создается с помощь перемешивания жидкости и движение в воде создается за искусственным теплоносителем-мешалкой, насосом, вентилятором и тому подобное.

по отношению к температуре насыщения? без недогрева и кипение с недогревом. При кипении с недогревом пузырьки воздуха растут у основания сосуда, отрываются и схлопываются. Если недогрева нет, то пузырьки отрываясь, растут и всплывают на поверхность жидкости. по ориентации поверхности кипения в пространстве? на горизонтальных наклонных и вертикальных поверхностях;

Некоторые слои жидкости непосредственно прилегающие к более горячей теплообменной поверхности, нагреваются выше и поднимаются как более легкие пристенные вдоль вертикальной поверхности. Таким образом, вдоль горячей поверхности возникает непрерывное движение среды, скорость которой определяет интенсивность теплообмена поверхности с основной массой практически неподвижной среды

по характеру кипения? развитое и неразвитое, неустойчивое кипение;

С ростом плотности теплового потока растет коэффициент парообразования. Кипение переходит в развитое пузырьковое. Увеличение частоты отрыва приводит к тому, что пузыри догоняют друг друга и сливаются. С увеличением температуры поверхности нагрева число центров парообразования резко возрастает, все большее количество оторвавшихся пузырьков всплывает в жидкости, вызывая ее интенсивное перемешивание. Такое кипение носит развитый характер.

1.2.Разделение процесса кипения по стадиям.

Кипячение воды представляет собой сложный процесс, состоящий из четырех ясно отличимых одна от другой стадий.

Первая стадия начинается с проскакивания со дна чайника маленьких пузырьков воздуха, а также появления групп пузырьков на поверхности воды у стенок чайника.

Вторая стадия характеризуется увеличение объема пузырьков. Затем постепенно количество пузырьков, возникающих в воде и рвущихся на поверхность, всё более увеличивается. На первой стадии кипения слышим тонкий, едва различимый сольный звук.

Третья стадия кипения характерна массовым стремительным подъёмом пузырьков, которые вызывают сначала легкое помутнение, а затем даже “побеление” воды, напоминая собой быстро бегущую воду родника. Это так называемое кипение “ белым ключом”. Оно - крайне непродолжительное. Звук становится похожим на шум небольшого пчелиного роя.

Четвертая - это интенсивное бурление воды, появление на поверхности больших лопающихся пузырей, а затем брызганьем. Брызги будут означать, что вода очень сильно перекипела. Звуки резко усиливаются, но их равномерность нарушается, они как бы стремятся опередить друг друга, нарастают хаотически.

2.Из Китайской церемонии чаепития.

На востоке отношение к чаепитию особое. В Китае и Японии чайная церемония была частью встреч философов и художников. Во время традиционного восточного чаепития произносились мудрые речи, рассматривались произведения искусства. Чайная церемония специально оформлялась для каждой встречи, подбирались букеты цветов. Использовалась специальная посуда для заварки чая. Особенное отношение было к воде, которая бралась для заваривания чая. Важно правильно вскипятить воду, обращая внимание на “циклы огня”, которые воспринимаются и воспроизводятся в кипятке. Вода не должна доводиться до бурного кипения, так как в результате этого уходит энергия воды, которая, соединяясь с энергией чайного листа, и производит в нас искомое чайное состояние.

Есть четыре стадии внешнего вида кипятка, которые соответственно называются “рыбий глаз ”, “крабий глаз” , “жемчужные нити” и “бурлящий источник” . Этим четырем стадиям соответствуют четыре характеристики звукового сопровождения закипания воды: тихий шум, средний шум, шум и сильный шум, которым в разных источниках тоже иногда даются разные поэтические названия.

Кроме того, отслеживают и стадии образования пара. Например, легкая дымка, туман, густой туман. Туман и густой туман указывают на переспелость кипятка, который уже не подходит для заваривания чая. Считается, что энергия огня в нем уже настолько сильна, что подавила энергию воды, и в результате вода не сможет должным образом войти в контакт с чайным листом и дать соответствующее качество энергии человеку, пьющему чаю.

В результате правильного заваривания получаем вкусный чай, заваривать который водой, не нагретой до 100 градусов, можно несколько раз, наслаждаясь тонкими оттенками послевкусия от каждого нового заваривания.

В России стали появляться чайные клубы, которые прививают культуру чаепития Востока. В чайной церемонии, которая называется Лу Юй, или кипячение воды на открытом огне можно наблюдать все стадии кипения воды. Такие эксперименты с процессом кипения воды можно провести в домашних условиях. Предлагаю несколько экспериментов:

– изменения температуры на дне сосуда и на поверхности жидкости;
изменение температурной зависимости стадий кипения воды;
- изменение объема кипящей воды с течением времени;
- распределения температурной зависимости от расстояния до поверхности жидкости.

3.Эксперименты по наблюдению процесса кипения.

3.1. Исследование температурной зависимости стадий кипения воды.

Проводилось измерение температуры на всех четырех стадиях кипениях жидкости. Были получены следующие результаты:

первая стадия кипения воды (РЫБИЙ ГЛАЗ) длилась с 1-ой по 4-ую минуты. Пузырьки на дне появились при температуре 55 градусов (фото 1).

Фото1.

вторая стадия кипения воды (КРАБИЙ ГЛАЗ) длилась с5-ой по7-ую минуты при температуре около 77 градусов. Мелкие пузырьки на дне увеличивались в объеме, напоминая глаза краба. (фото 2).

Фото 2.

третья стадия кипения воды (ЖЕМЧУЖНЫЕ НИТИ) длилась с 8-ой по10-ую минуты. Множество мелких пузырьков образовывали ЖЕМЧУЖНЫЕ НИТИ, которые поднимались к поверхности воды, не достигая её. Процесс начался при температуре в 83 градуса (фото 3).

Фото 3.

четвертая стадия кипения воды (БУРЛЯЩИЙ ИСТОЧНИК) длилась с 10-ой по12-ую минуты. Пузырьки росли, поднимались на поверхность воды, и лопались, создавая бурление воды. Процесс проходил при температуре 98 градусов (фото 4). Фото 4.

Фото 4.

3.2. Исследование изменения объема кипящей воды с течением времени.

С течением времени, объём кипящей воды изменяется. Первоначальный объем воды в кастрюле составлял 1 л. Через 32 минуты объем уменьшился вдвое. Это хорошо видно на фото 5, отмечено красными точками.

Фото 5.


Фото 6.

За следующие 13 минут кипения воды её объем уменьшился на одну треть, эта линия так же отмечена красными точками (фото 6).

По результатам измерений была получена зависимостьизменения объема кипящей воды с течением времени.

Рис.1. График изменения объема кипящей воды от времени

Вывод: Изменение объема обратно пропорционально времени кипения жидкости(рис.1) до тех пор, пока от первоначального объема не осталось1/ 25 часть. На последней стадии уменьшение объема замедлилось. Здесь играет роль режим плёночного кипения. Если температура дна сосуда значительно превышает температуру кипения жидкости, то скорость образования пузырей на дне становится столь большой, что они объединяются вместе, образуя сплошную паровую прослойку между дном сосуда и непосредственно самой жидкостью. В этом режиме скоростьвыкипания жидкости уменьшается.

3.3. Исследование распределения температурной зависимости от расстояния до поверхности жидкости.

В кипящей жидкости устанавливается определённое распределение температуры (рис 2), у поверхности нагрева жидкость заметно перегрета. Величина перегрева зависит от ряда физико-химических свойств и самой жидкости, а так же граничных твёрдых поверхностей. Тщательно очищенные жидкости, лишённые растворённых газов (воздуха), можно при соблюдении особых мер предосторожности перегреть на десятки градусов.

Рис. 2.График зависимости изменения температуры воды у поверхности от расстояния до поверхности нагрева.

По результатам измерений можно получить график зависимости изменения температуры воды от расстояния до поверхности нагрева.

Вывод: с увеличением глубины жидкости температура меньше, причем на небольших расстояниях от поверхности до 1 см температура резко уменьшается, а потом почти не меняется.

3.4.Исследование изменения температуры на дне сосуда и у поверхности жидкости.

Было проведено 12 измерений. Воду нагревали от температуры 7 градусов до момента закипания. Измерения температуры проводились через каждую минуту. По результатам измерения было получено два графика изменения температуры у поверхности воды и на дне.

Рис.3.Таблица и график по результатам наблюдений. (Фото автора)

Выводы: изменение температуры воды на дне сосуда и на поверхности различно. На поверхности температура меняется строго по линейному закону и достигает температуры кипения позже на три минуты, чем на дне. Это объясняется тем, что на поверхности жидкость соприкасается с воздухом и отдаёт часть своей энергии, поэтому прогревается не так, как на дне кастрюли.

Выводы по результатам работы.

Было выяснено, что вода при нагревании до температуры кипения проходит три стадии, зависящие от теплообмена внутри жидкости с образованием и ростом внутри жидкости пузырьков пара. При наблюдении за поведением воды отмечены характерные особенности каждой стадии.

Изменение температуры воды на дне сосуда и на поверхности различно. На поверхности температура меняется строго по линейному закону и достигает температуры кипения позже на три минуты, чем на дне.Это объясняется тем, что на поверхности жидкость соприкасается с воздухом и отдаёт часть своей энергии.

Так же было определено экспериментально, что с увеличением глубины жидкости температура меньше, причем на небольших расстояниях от поверхности до 1 см температура резко уменьшается, а потом почти не меняется.

Процесс кипения происходит с поглощение теплоты. При нагревании жидкости большая часть энергии идет на разрыв связей между молекулами воды. При этом растворенный в воде газ выделяется на дне и стенках сосуда, образуя воздушные пузырьки. Достигнув определенных размеров, пузырек поднимается на поверхность и схлопывается с характерным звуком. Если таких пузырьков много, то вода “шипит”. Пузырек воздуха поднимается на поверхность воды и лопается, если выталкивающая сила, больше силы тяжести. Кипение представляет собой непрерывный процесс, при кипении температура воды равна 100 градусов и не меняется в процессе выкипания воды.

Литература

  1. В.П. Исаченко, В.А. Осипова, А.С. Сукомел “Теплопередача” М.: Энергия 1969
  2. Френкель Я.И. Кинетическая теория жидкостей. Л., 1975
  3. Крокстон К. А. Физика жидкого состояния. М., 1987
  4. П.М. Куреннова “ Русский Народный Лечебник”.
  5. Буздин А. , Сорокин В. , Кипение жидкостей. Журнал “Квант”, N6 ,1987

Каждый знает, что температура кипения воды при обычном атмосферном давлении (около 760 мм рт. ст.) составляет 100 °С. Но не всем известно, что вода может закипать при различной температуре. Точка закипания зависит от ряда факторов. Если срабатывают определенные условия, вода может закипеть и при +70 °С, и при +130 °С, и даже при 300 °С! Рассмотрим причины более подробно.

От чего зависит температура кипения воды?

Закипание воды в емкости происходит по определенному механизму. В процессе нагрева жидкости на стенках емкости, в которую она налита, появляются пузырьки воздуха. Внутри каждого пузырька находится пар. Температура пара в пузырьках изначально значительно выше нагреваемой воды. Но ее давление в этот период выше, чем внутри пузырьков. Пока вода не прогрелась, пар в пузырьках сжимается. Затем под воздействием внешнего давления пузырьки лопаются. Процесс длится до тех пор, пока температуры жидкости и пара в пузырьках не сравняются. Именно теперь шарики с паром могут подняться на поверхность. Вода начинает закипать. Далее процесс нагрева прекращается, так как излишки тепла выводятся паром наружу в атмосферу. Это термодинамическое равновесие. Вспомним физику: давление воды состоит из веса самой жидкости и давления воздуха над сосудом с водой. Таким образом, меняя один из двух параметров (давление жидкости в сосуде и давление атмосферы), можно изменить температуру закипания.

Какова температура кипения воды в горах?

В горах температура кипения жидкости постепенно падает. Это связано с тем, что атмосферное давление при восхождении на гору постепенно понижается. Чтобы вода закипела, давление в пузырьках, которые появляются в процессе нагрева воды, должно быть равным атмосферному. Поэтому с увеличением высоты в горах на каждые 300 м температура кипения воды снижается приблизительно на один градус. Такой кипяток не такой горячий, как кипящая жидкость на равнинной местности. На большой высоте сложно, а иногда и невозможно заварить чай. Зависимость кипения воды от давления выглядит таким образом:

Высота над уровнем моря

Температура закипания

А в других условиях?

А какова температура кипения воды в вакууме? Вакуум представляет собой разреженную среду, в которой давление значительно ниже атмосферного. Температура кипения воды в разреженной среде также зависит от остаточного давления. При давлении в вакууме 0,001 атм. жидкость закипит при 6,7 °С. Обычно остаточное давление составляет около 0,004 атм., поэтому при таком давлении вода закипает при 30 °С. При увеличении давления в разреженной среде, температура кипения жидкости будет повышаться.

Почему в герметической емкости вода кипит при более высокой температуре?

В герметически закрытом сосуде температура кипения жидкости связана с давлением внутри емкости. В процессе нагрева происходит выделение пара, который оседает конденсатом на крышке и стенках сосуда. Таким образом, увеличивается давление внутри сосуда. Например, в скороварке давление достигает 1,04 атм., поэтому жидкость кипит в ней при 120 °С. Обычно в таких емкостях давление можно регулировать при помощи встроенных клапанов, следовательно, и температуру тоже.