Определение и примеры рациональных чисел. Рациональные числа, определение, примеры

Определение и примеры рациональных чисел. Рациональные числа, определение, примеры

Рациональные числа

Четверти

  1. Упорядоченность . a и b существует правило, позволяющее однозначно идентифицировать между ними одно и только одно из трёх отношений : « < », « > » или « = ». Это правило называется правилом упорядочения и формулируется следующим образом: два неотрицательных числа и связаны тем же отношением, что и два целых числа и ; два неположительных числа a и b связаны тем же отношением, что и два неотрицательных числа и ; если же вдруг a неотрицательно, а b - отрицательно, то a > b . src="/pictures/wiki/files/57/94586b8b651318d46a00db5413cf6c15.png" border="0">

    Суммирование дробей

  2. Операция сложения . Для любых рациональных чисел a и b существует так называемое правило суммирования c . При этом само число c называется суммой чисел a и b и обозначается , а процесс отыскания такого числа называется суммированием . Правило суммирования имеет следующий вид: .
  3. Операция умножения . Для любых рациональных чисел a и b существует так называемое правило умножения , которое ставит им в соответствие некоторое рациональное число c . При этом само число c называется произведением чисел a и b и обозначается , а процесс отыскания такого числа также называется умножением . Правило умножения имеет следующий вид: .
  4. Транзитивность отношения порядка. Для любой тройки рациональных чисел a , b и c если a меньше b и b меньше c , то a меньше c , а если a равно b и b равно c , то a равно c . 6435">Коммутативность сложения. От перемены мест рациональных слагаемых сумма не меняется.
  5. Ассоциативность сложения. Порядок сложения трёх рациональных чисел не влияет на результат.
  6. Наличие нуля . Существует рациональное число 0, которое сохраняет любое другое рациональное число при суммировании.
  7. Наличие противоположных чисел. Любое рациональное число имеет противоположное рациональное число, при суммировании с которым даёт 0.
  8. Коммутативность умножения. От перемены мест рациональных множителей произведение не меняется.
  9. Ассоциативность умножения. Порядок перемножения трёх рациональных чисел не влияет на результат.
  10. Наличие единицы . Существует рациональное число 1, которое сохраняет любое другое рациональное число при умножении.
  11. Наличие обратных чисел . Любое рациональное число имеет обратное рациональное число, при умножении на которое даёт 1.
  12. Дистрибутивность умножения относительно сложения. Операция умножения согласована с операцией сложения посредством распределительного закона:
  13. Связь отношения порядка с операцией сложения. К левой и правой частям рационального неравенства можно прибавлять одно и то же рациональное число. /pictures/wiki/files/51/358b88fcdff63378040f8d9ab9ba5048.png" border="0">
  14. Аксиома Архимеда . Каково бы ни было рациональное число a , можно взять столько единиц, что их сумма превзойдёт a . src="/pictures/wiki/files/55/70c78823302483b6901ad39f68949086.png" border="0">

Дополнительные свойства

Все остальные свойства, присущие рациональным числам, не выделяют в основные, потому что они, вообще говоря, уже не опираются непосредственно на свойства целых чисел, а могут быть доказаны исходя из приведённых основных свойств или непосредственно по определению некоторого математического объекта. Таких дополнительных свойств очень много. Здесь имеет смысл привести лишь некоторые из них.

Src="/pictures/wiki/files/48/0caf9ffdbc8d6264bc14397db34e8d72.png" border="0">

Счётность множества

Нумерация рациональных чисел

Чтобы оценить количество рациональных чисел, нужно найти мощность их множества. Легко доказать, что множество рациональных чисел счётно . Для этого достаточно привести алгоритм, который нумерует рациональные числа, т. е. устанавливает биекцию между множествами рациональных и натуральных чисел.

Самый простой из таких алгоритмов выглядит следующим образом. Составляется бесконечная таблица обыкновенных дробей, на каждой i -ой строке в каждом j -ом столбце которой располагается дробь . Для определённости считается, что строки и столбцы этой таблицы нумеруются с единицы. Ячейки таблицы обозначаются , где i - номер строки таблицы, в которой располагается ячейка, а j - номер столбца.

Полученная таблица обходится «змейкой» по следующему формальному алгоритму.

Эти правила просматриваются сверху вниз и следующее положение выбирается по первому совпадению.

В процессе такого обхода каждому новому рациональному числу ставится в соответствие очередное натуральное число. Т. е. дроби 1 / 1 ставится в соответствие число 1, дроби 2 / 1 - число 2, и т. д. Нужно отметить, что нумеруются только несократимые дроби. Формальным признаком несократимости является равенство единице наибольшего общего делителя числителя и знаменателя дроби.

Следуя этому алгоритму, можно занумеровать все положительные рациональные числа. Это значит, что множество положительных рациональных чисел счётно. Легко установить биекцию между множествами положительных и отрицательных рациональных чисел, просто поставив в соответствие каждому рациональному числу противоположное ему. Т. о. множество отрицательных рациональных чисел тоже счётно. Их объединение также счётно по свойству счётных множеств. Множество же рациональных чисел тоже счётно как объединение счётного множества с конечным.

Утверждение о счётности множества рациональных чисел может вызывать некоторое недоумение, т. к. на первый взгляд складывается впечатление, что оно гораздо обширнее множества натуральных чисел. На самом деле это не так и натуральных чисел хватает, чтобы занумеровать все рациональные.

Недостаточность рациональных чисел

Гипотенуза такого треугольника не выражается никаким рациональным числом

Рациональными числами вида 1 / n при больших n можно измерять сколь угодно малые величины . Этот факт создаёт обманчивое впечатление, что рациональными числами можно измерить вообще любые геометрические расстояния . Легко показать, что это не верно.

Примечания

Литература

  • И.Кушнир. Справочник по математике для школьников. - Киев: АСТАРТА, 1998. - 520 с.
  • П. С. Александров. Введение в теорию множеств и общую топологию. - М.: глав. ред. физ.-мат. лит. изд. «Наука», 1977
  • И. Л. Хмельницкий. Введение в теорию алгебраических систем

Ссылки

Wikimedia Foundation . 2010 .

Тема рациональных чисел достаточно обширна. О ней можно говорить бесконечно и писать целые труды, каждый раз удивляясь новым фишкам.

Чтобы не допускать в будущем ошибок, в данном уроке мы немного углубимся в тему рациональных чисел, почерпнём из неё необходимые сведения и двинемся дальше.

Содержание урока

Что такое рациональное число

Рациональное число — это число, которое может быть представлено в виде дроби , где a — это числитель дроби, b — знаменатель дроби. Причем b не должно быть нулём, поскольку деление на ноль не допускается.

К рациональным числам относятся следующие категории чисел:

  • целые числа (например −2, −1, 0 1, 2 и т.д.)
  • десятичные дроби (например 0,2 и т.п.)
  • бесконечные периодические дроби (например 0,(3) и т.п.)

Каждое число из этой категории может быть представлено в виде дроби .

Пример 1. Целое число 2 может быть представлено в виде дроби . Значит число 2 относится не только к целым числам, но и к рациональным.

Пример 2. Смешанное число может быть представлено в виде дроби . Данная дробь получается путём перевода смешанного числа в неправильную дробь

Значит смешанное число относится к рациональным числам.

Пример 3. Десятичная дробь 0,2 может быть представлена в виде дроби . Данная дробь получилась путём перевода десятичной дроби 0,2 в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему .

Поскольку десятичная дробь 0,2 может быть представлена в виде дроби , значит она тоже относится к рациональным числам.

Пример 4. Бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби . Данная дробь получается путём перевода чистой периодической дроби в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему .

Поскольку бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби , значит она тоже относится к рациональным числам.

В дальнейшем, все числа которые можно представить в виде дроби, мы всё чаще будем называть одним словосочетанием — рациональные числа .

Рациональные числа на координатной прямой

Координатную прямую мы рассматривали, когда изучали отрицательные числа. Напомним, что это прямая линия на которой лежат множество точек. Выглядит следующим образом:

На этом рисунке приведен небольшой фрагмент координатной прямой от −5 до 5.

Отметить на координатной прямой целые числа вида 2, 0, −3 не составляет особого труда.

Намного интереснее дела обстоят с остальными числами: с обыкновенными дробями, смешанными числами, десятичными дробями и т.д. Эти числа лежат между целыми числами и этих чисел бесконечно много.

Например, отметим на координатной прямой рациональное число . Данное число располагается ровно между нулём и единицей

Попробуем понять, почему дробь вдруг расположилась между нулём и единицей.

Как уже говорилось выше, между целыми числами лежат остальные числа — обыкновенные дроби, десятичные дроби, смешанные числа и т.д. К примеру, если увеличить участок координатной прямой от 0 до 1, то можно увидеть следующую картину

Видно, что между целыми числами 0 и 1 лежат уже другие рациональные числа, которые являются знакомыми для нас десятичными дробями. Здесь же видна наша дробь , которая расположилась там же, где и десятичная дробь 0,5. Внимательное рассмотрение этого рисунка даёт ответ на вопрос почему дробь расположилась именно там.

Дробь означает разделить 1 на 2. А если разделить 1 на 2, то мы получим 0,5

Десятичную дробь 0,5 можно замаскировать и под другие дроби. Из основного свойства дроби мы знаем, что если числитель и знаменатель дроби умножить или разделить на одно и то же число, то значение дроби не изменится.

Если числитель и знаменатель дроби умножить на любое число, например на число 4, то мы получим новую дробь , а эта дробь также как и равна 0,5

А значит на координатной прямой дробь можно расположить там же, где и располагалась дробь

Пример 2. Попробуем отметить на координатной рациональное число . Данное число располагается ровно между числами 1 и 2

Значение дроби равно 1,5

Если увеличить участок координатной прямой от 1 до 2, то мы увидим следующую картину:

Видно, что между целыми числами 1 и 2 лежат уже другие рациональные числа, которые являются знакомыми для нас десятичными дробями. Здесь же видна наша дробь , которая расположилась там же, где и десятичная дробь 1,5.

Мы увеличивали определенные отрезки на координатной прямой, чтобы увидеть остальные числа, лежащие на этом отрезке. В результате, мы обнаруживали десятичные дроби, которые имели после запятой одну цифру.

Но это были не единственные числа, лежащие на этих отрезках. Чисел, лежащих на координатной прямой бесконечно много.

Нетрудно догадаться, что между десятичными дробями, имеющими после запятой одну цифру, лежат уже другие десятичные дроби, имеющие после запятой две цифры. Другими словами, сотые части отрезка.

К примеру, попробуем увидеть числа, которые лежат между десятичными дробями 0,1 и 0,2

Ещё пример. Десятичные дроби, имеющие две цифры после запятой и лежащие между нулём и рациональным числом 0,1 выглядят так:

Пример 3. Отметим на координатной прямой рациональное число . Данное рациональное число будет располагаться очень близко к нулю

Значение дроби равно 0,02

Если мы увеличим отрезок от 0 до 0,1 то увидим где точно расположилось рациональное число

Видно, что наше рациональное число расположилось там же, где и десятичная дробь 0,02.

Пример 4. Отметим на координатной прямой рациональное число 0, (3)

Рациональное число 0, (3) является бесконечной периодической дробью. Его дробная часть никогда не заканчивается, она бесконечная

И поскольку у числа 0,(3) дробная часть является бесконечной, это означает, что мы не сможем найти точное место на координатной прямой, где это число располагается. Мы можем лишь указать это место приблизительно.

Рациональное число 0,33333… будет располагаться очень близко к обычной десятичной дроби 0,3

Данный рисунок не показывает точное место расположения числа 0,(3). Это лишь иллюстрация, показывающая как близко может располагаться периодическая дробь 0,(3) к обычной десятичной дроби 0,3.

Пример 5. Отметим на координатной прямой рациональное число . Данное рациональное число будет располагаться посередине между числами 2 и 3

Это есть 2 (две целых) и (одна вторая). Дробь по другому ещё называют «половиной». Поэтому мы отметили на координатной прямой два целых отрезка и ещё половину отрезка.

Если перевести смешанное число в неправильную дробь, то получим обыкновенную дробь . Эта дробь на координатной прямой будет располагаться там же, где и дробь

Значение дроби равно 2,5

Если увеличить участок координатной прямой от 2 до 3, то мы увидим следующую картину:

Видно, что наше рациональное число расположилось там же, где и десятичная дробь 2,5

Минус перед рациональным числом

В предыдущем уроке, который назвался мы научились делить целые числа. В роли делимого и делителя могли стоять как положительные, так и отрицательные числа.

Рассмотрим простейшее выражение

(−6) : 2 = −3

В данном выражении делимое (−6) является отрицательным числом.

Теперь рассмотрим второе выражение

6: (−2) = −3

Здесь уже отрицательным числом является делитель (−2). Но в обоих случаях мы получаем один и тот же ответ −3.

Учитывая, что любое деление можно записать в виде дроби, мы можем рассмотренные выше примеры также записать в виде дроби:

А поскольку в обоих случаях значение дроби одинаково, минус стоящий либо в числителе либо в знаменателе можно сделать общим, поставив его перед дробью

Поэтому между выражениями и и можно поставить знак равенства, потому что они несут одно и то же значение

В дальнейшем работая с дробями, если минус будет нам встречаться в числителе или в знаменателе, мы будем делать этот минус общим, ставя его перед дробью.

Противоположные рациональные числа

Как и целое число, рациональное число имеет своё противоположное число.

Например, для рационального числа противоположным числом является . Располагается оно на координатной прямой симметрично расположению относительно начала координат. Другими словами, оба этих числа равноудалены от начала координат

Перевод смешанных чисел в неправильные дроби

Мы знаем что для того, чтобы перевести смешанное число в неправильную дробь, нужно целую часть умножить на знаменатель дробной части и прибавить к числителю дробной части. Полученное число будет числителем новой дроби, а знаменатель остаётся прежним..

Например, переведём смешанное число в неправильную дробь

Умножим целую часть на знаменатель дробной части и прибавим числитель дробной части:

Вычислим данное выражение:

(2 × 2) + 1 = 4 + 1 = 5

Полученное число 5 будет числителем новой дроби, а знаменатель останется прежним:

Полностью данная процедура записывается следующим образом:

Чтобы вернуть изначальное смешанное число, достаточно выделить целую часть в дроби

Но этот способ перевода смешанного числа в неправильную дробь применим только в том случае, если смешанное число является положительным. Для отрицательного числа данный способ не сработает.

Рассмотрим дробь . Выделим в этой дроби целую часть. Получим

Чтобы вернуть изначальную дробь нужно перевести смешанное число в неправильную дробь. Но если мы воспользуемся старым правилом, а именно умножим целую часть на знаменатель дробной части и к полученному числу прибавим числитель дробной части, то получим следующее противоречие:

Мы получили дробь , а должны были получить дробь .

Делаем вывод, что смешанное число в неправильную дробь переведено неправильно:

Чтобы правильно перевести отрицательное смешанное число в неправильную дробь, нужно целую часть умножить на знаменатель дробной части, и из полученного числа вычесть числитель дробной части. В этом случае у нас всё встанет на свои места

Отрицательное смешанное число является противоположным для смешанного числа . Если положительное смешанное число располагается в правой части и выглядит так


В этой статье мы начнем изучать рациональные числа . Здесь мы дадим определения рациональных чисел, дадим необходимые пояснения и приведем примеры рациональных чисел. После этого остановимся на том, как определить, является ли данное число рациональным или нет.

Навигация по странице.

Определение и примеры рациональных чисел

В этом пункте мы дадим несколько определений рациональных чисел. Несмотря на различия в формулировках, все эти определения имеют единый смысл: рациональные числа объединяют целые числа и дробные числа , подобно тому, как целые числа объединяют натуральные числа , противоположные им числа и число нуль. Иными словами, рациональные числа обобщают целые и дробные числа.

Начнем с определения рациональных чисел , которое воспринимается наиболее естественно.

Из озвученного определения следует, что рациональным числом является:

  • Любое натуральное число n . Действительно, можно представить любое натуральное число в виде обыкновенной дроби , например, 3=3/1 .
  • Любое целое число, в частности, число нуль. В самом деле, любое целое число можно записать в виде либо положительной обыкновенной дроби, либо в виде отрицательной обыкновенной дроби, либо как нуль. Например, 26=26/1 , .
  • Любая обыкновенная дробь (положительная или отрицательная). Это напрямую утверждается приведенным определением рациональных чисел.
  • Любое смешанное число . Действительно, всегда можно представить смешанное число в виде неправильной обыкновенной дроби. Например, и .
  • Любая конечная десятичная дробь или бесконечная периодическая дробь . Это так в силу того, что указанные десятичные дроби переводятся в обыкновенные дроби. К примеру, , а 0,(3)=1/3 .

Также понятно, что любая бесконечная непериодическая десятичная дробь НЕ является рациональным числом, так как она не может быть представлена в виде обыкновенной дроби.

Теперь мы можем с легкостью привести примеры рациональных чисел . Числа 4 , 903 , 100 321 – это рациональные числа, так как они натуральные. Целые числа 58 , −72 , 0 , −833 333 333 тоже являются примерами рациональных чисел. Обыкновенные дроби 4/9 , 99/3 , - это тоже примеры рациональных чисел. Рациональными числами являются и числа .

Из приведенных примеров видно, что существуют и положительные и отрицательные рациональные числа, а рациональное число нуль не является ни положительным, ни отрицательным.

Озвученное выше определение рациональных чисел можно сформулировать более краткой форме.

Определение.

Рациональными числами называют числа, которые можно записать в виде дроби z/n , где z – целое число, а n – натуральное число.

Докажем, что данное определение рациональных чисел равносильно предыдущему определению. Мы знаем, что можно рассматривать черту дроби как знак деления , тогда из свойств деления целых чисел и правил деления целых чисел следует справедливость следующих равенств и . Таким образом, , что и является доказательством.

Приведем примеры рациональных чисел, основываясь на данном определении. Числа −5 , 0 , 3 , и являются рациональными числами, так как они могут быть записаны в виде дробей с целым числителем и натуральным знаменателем вида и соответственно.

Определение рациональных чисел можно дать и в следующей формулировке.

Определение.

Рациональные числа – это числа, которые могут быть записаны в виде конечной или бесконечной периодической десятичной дроби.

Это определение также равносильно первому определению, так как всякой обыкновенной дроби соответствует конечная или периодическая десятичная дробь и обратно, а любому целому числу можно сопоставить десятичную дробь с нулями после запятой.

Например, числа 5 , 0 , −13 , представляют собой примеры рациональных чисел, так как их можно записать в виде следующих десятичных дробей 5,0 , 0,0 , −13,0 , 0,8 и −7,(18) .

Закончим теорию этого пункта следующими утверждениями:

  • целые и дробные числа (положительные и отрицательные) составляют множество рациональных чисел;
  • каждое рациональное число может быть представлено в виде дроби с целым числителем и натуральным знаменателем, а каждая такая дробь представляет собой некоторое рациональное число;
  • каждое рациональное число может быть представлено в виде конечной или бесконечной периодической десятичной дроби, а каждая такая дробь представляет собой некоторое рациональное число.

Является ли данное число рациональным?

В предыдущем пункте мы выяснили, что любое натуральное число, любое целое число, любая обыкновенная дробь, любое смешанное число, любая конечная десятичная дробь, а также любая периодическая десятичная дробь является рациональным числом. Это знание нам позволяет «узнавать» рациональные числа из множества написанных чисел.

Но как быть, если число задано в виде некоторого , или как , и т.п., как ответить на вопрос, является ли данное число рациональным? Во многих случаях ответить на него очень сложно. Укажем некоторые направления ходу мысли.

Если число задано в виде числового выражения, которое содержит лишь рациональные числа и знаки арифметических действий (+, −, · и:), то значение этого выражения представляет собой рациональное число. Это следует из того, как определены действия с рациональными числами . Например, выполнив все действия в выражении , мы получаем рациональное число 18 .

Иногда, после упрощения выражений и более сложного вида, появляется возможность определить, рационально ли заданное число.

Пойдем дальше. Число 2 является рациональным числом, так как любое натуральное число является рациональным. А как насчет числа ? Является ли оно рациональным? Оказывается, что нет, - не является рациональным числом, это иррациональное число (доказательство этого факта методом от противного приведено в учебнике по алгебре за 8 класс, указанном ниже в списке литературы). Также доказано, что квадратный корень из натурального числа является рациональным числом только в тех случаях, когда под корнем находится число, являющееся полным квадратом некоторого натурального числа. Например, и - рациональные числа, так как 81=9 2 и 1 024=32 2 , а числа и не являются рациональными, так как числа 7 и 199 не являются полными квадратами натуральных чисел.

А число рационально или нет? В данном случае несложно заметить, что , следовательно, данное число – рациональное. А является ли число рациональным? Доказано, что корень k-ой степени из целого числа является рациональным числом только тогда, когда число под знаком корня является k-ой степенью некоторого целого числа. Поэтому не является рациональным числом, так как не существует целого числа, пятая степень которого равна 121 .

Метод от противного позволяет доказывать, что логарифмы некоторых чисел по некоторым основаниям не являются рациональными числами. Для примера докажем, что - не рациональное число.

Предположим противное, то есть, допустим, что - рациональное число и его можно записать в виде обыкновенной дроби m/n . Тогда и дают следующие равенства: . Последнее равенство невозможно, так как в левой его части находится нечетное число 5 n , а в правой части – четное число 2 m . Следовательно, наше предположение неверно, таким образом, не является рациональным числом.

В заключение стоит особо отметить, что при выяснении рациональности или иррациональности чисел следует воздержаться от скоропостижных выводов.

Например, не стоит сразу утверждать, что произведение иррациональных чисел π и e является иррациональным числом, это «как бы очевидно», но не доказано. При этом возникает вопрос: «А с чего бы произведению быть рациональным числом»? А почему бы и нет, ведь можно привести пример иррациональных чисел, произведение которых дает рациональное число: .

Также неизвестно, являются ли числа и многие другие числа рациональными или не являются таковыми. Например, существуют иррациональные числа, иррациональная степень которых является рациональным числом. Для иллюстрации приведем степень вида , основание данной степени и показатель степени не являются рациональными числами, но , а 3 – рациональное число.

Список литературы.

  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Множество рациональных чисел

Множество рациональных чисел обозначается и может быть записано таком в виде:

При этом оказывается, что разные записи могут представлять одну и ту же дробь, например, и , (все дроби, которые можно получить друг из друга умножением или делением на одно и то же натуральное число, представляют одно и то же рациональное число). Поскольку делением числителя и знаменателя дроби на их наибольший общий делитель можно получить единственное несократимое представление рационального числа, то можно говорить об их множестве как о множестве несократимых дробей со взаимно простыми целым числителем и натуральным знаменателем:

Здесь - наибольший общий делитель чисел и .

Множество рациональных чисел является естественным обобщением множества целых чисел . Легко видеть, что если у рационального числа знаменатель , то является целым числом. Множество рациональных чисел располагается на числовой оси всюду плотно: между любыми двумя различными рациональными числами расположено хотя бы одно рациональное число (а значит, и бесконечное множество рациональных чисел). Тем не менее, оказывается, что множество рациональных чисел имеет счётную мощность (то есть все его элементы можно перенумеровать). Заметим, кстати, что ещё древние греки убедились в существовании чисел, не представимых в виде дроби (например, они доказали, что не существует рационального числа, квадрат которого равен 2).

Терминология

Формальное определение

Формально рациональные числа определяются как множество классов эквивалентности пар по отношению эквивалентности , если . При этом операции сложения и умножения определяются следующим образом:

Связанные определения

Правильные, неправильные и смешанные дроби

Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Правильные дроби представляют рациональные числа, по модулю меньшие единицы . Дробь, не являющаяся правильной, называется неправильной и представляет рациональное число, большее или равное единице по модулю.

Неправильную дробь можно представить в виде суммы целого числа и правильной дроби, называемой смешанной дробью . Например, . Подобная запись (с пропущенным знаком сложения), хотя и употребляется в элементарной арифметике , избегается в строгой математической литературе из-за схожести обозначения смешанной дроби с обозначением произведения целого числа на дробь.

Высота дроби

Высота обыкновенной дроби - это сумма модуля числителя и знаменателя этой дроби. Высота рационального числа - это сумма модуля числителя и знаменателя несократимой обыкновенной дроби, соответствующей этому числу.

Например, высота дроби равна . Высота же соответствующего рационального числа равна , так как дробь сокращается на .

Комментарий

Термин дробное число (дробь) иногда [уточнить ] используется как синоним к термину рациональное число , а иногда синоним любого нецелого числа. В последнем случае, дробные и рациональные числа являются разными вещами, так как тогда нецелые рациональные числа - всего лишь частный случай дробных.

Свойства

Основные свойства

Множество рациональных чисел удовлетворяют шестнадцати основным свойствам , которые легко могут быть получены из свойств целых чисел .

  1. Упорядоченность . Для любых рациональных чисел и существует правило, позволяющее однозначно идентифицировать между ними одно и только одно из трёх отношений : «», «» или «». Это правило называется правилом упорядочения и формулируется следующим образом: два положительных числа и связаны тем же отношением, что и два целых числа и ; два неположительных числа и связаны тем же отношением, что и два неотрицательных числа и ; если же вдруг неотрицательно, а - отрицательно, то .

    Суммирование дробей

  2. Операция сложения . правило суммирования суммой чисел и и обозначается , а процесс отыскания такого числа называется суммированием . Правило суммирования имеет следующий вид: .
  3. Операция умножения . Для любых рациональных чисел и существует так называемое правило умножения , которое ставит им в соответствие некоторое рациональное число . При этом само число называется произведением чисел и и обозначается , а процесс отыскания такого числа также называется умножением . Правило умножения имеет следующий вид: .
  4. Транзитивность отношения порядка. Для любой тройки рациональных чисел , и если меньше и меньше , то меньше , а если равно и равно , то равно .
  5. Коммутативность сложения. От перемены мест рациональных слагаемых сумма не меняется.
  6. Ассоциативность сложения. Порядок сложения трёх рациональных чисел не влияет на результат.
  7. Наличие нуля . Существует рациональное число 0, которое сохраняет любое другое рациональное число при суммировании.
  8. Наличие противоположных чисел. Любое рациональное число имеет противоположное рациональное число, при суммировании с которым даёт 0.
  9. Коммутативность умножения. От перемены мест рациональных множителей произведение не меняется.
  10. Ассоциативность умножения. Порядок перемножения трёх рациональных чисел не влияет на результат.
  11. Наличие единицы . Существует рациональное число 1, которое сохраняет любое другое рациональное число при умножении.
  12. Наличие обратных чисел . Любое ненулевое рациональное число имеет обратное рациональное число, умножение на которое даёт 1.
  13. Дистрибутивность умножения относительно сложения. Операция умножения согласована с операцией сложения посредством распределительного закона:
  14. Связь отношения порядка с операцией сложения. К левой и правой частям рационального неравенства можно прибавлять одно и то же рациональное число.
  15. Связь отношения порядка с операцией умножения. Левую и правую части рационального неравенства можно умножать на одно и то же положительное рациональное число.
  16. Аксиома Архимеда . Каково бы ни было рациональное число , можно взять столько единиц, что их сумма превзойдёт .

Дополнительные свойства

Все остальные свойства, присущие рациональным числам, не выделяют в основные, потому что они, вообще говоря, уже не опираются непосредственно на свойства целых чисел, а могут быть доказаны исходя из приведённых основных свойств или непосредственно по определению некоторого математического объекта. Таких дополнительных свойств очень много. Здесь имеет смысл привести лишь некоторые из них.

Счётность множества

Чтобы оценить количество рациональных чисел, нужно найти мощность их множества. Легко доказать, что множество рациональных чисел счётно . Для этого достаточно привести алгоритм, который нумерует рациональные числа, т. е. устанавливает биекцию между множествами рациональных и натуральных чисел. Примером такого построения может служить следующий простой алгоритм. Составляется бесконечная таблица обыкновенных дробей, на каждой -ой строке в каждом -ом столбце которой располагается дробь . Для определённости считается, что строки и столбцы этой таблицы нумеруются с единицы. Ячейки таблицы обозначаются , где - номер строки таблицы, в которой располагается ячейка, а - номер столбца.

Полученная таблица обходится «змейкой» по следующему формальному алгоритму.

Эти правила просматриваются сверху вниз и следующее положение выбирается по первому совпадению.

В процессе такого обхода каждому новому рациональному числу ставится в соответствие очередное натуральное число. Т. е. дроби ставится в соответствие число 1, дроби - число 2, и т. д. Нужно отметить, что нумеруются только несократимые дроби. Формальным признаком несократимости является равенство единице наибольшего общего делителя числителя и знаменателя дроби.

Следуя этому алгоритму, можно занумеровать все положительные рациональные числа. Это значит, что множество положительных рациональных чисел счётно. Легко установить биекцию между множествами положительных и отрицательных рациональных чисел, просто поставив в соответствие каждому рациональному числу противоположное ему. Т. о. множество отрицательных рациональных чисел тоже счётно. Их объединение также счётно по свойству счётных множеств. Множество же рациональных чисел тоже счётно как объединение счётного множества с конечным.

Разумеется, существуют и другие способы занумеровать рациональные числа. Например, для этого можно воспользоваться такими структурами как дерево Калкина - Уилфа, дерево Штерна - Броко или ряд Фарея .

Утверждение о счётности множества рациональных чисел может вызывать некоторое недоумение, т. к. на первый взгляд складывается впечатление, что оно гораздо обширнее множества натуральных чисел. На самом деле это не так и натуральных чисел хватает, чтобы занумеровать все рациональные.

Недостаточность рациональных чисел

См. также

Целые числа
Рациональные числа
Вещественные числа Комплексные числа Кватернионы

Примечания

Литература

  • И.Кушнир. Справочник по математике для школьников. - Киев: АСТАРТА, 1998. - 520 с.
  • П. С. Александров. Введение в теорию множеств и общую топологию. - М.: глав. ред. физ.-мат. лит. изд. «Наука», 1977
  • И. Л. Хмельницкий. Введение в теорию алгебраических систем

Рациональные числа – это числа вида , где
– целое число, а– натуральное. Множество рациональных чисел обозначают буквой. При этом выполняется соотношение
, так как любое целое число
можно представить в виде. Таким образом, можно сказать, что рациональные числа – это все целые числа, а также положительные и отрицательные обыкновенные дроби.

Десятичные дроби – это такие обыкновенные дроби, у которых знаменатель – единица с нулями, то есть 10; 100; 1000 и т.д. Десятичные дроби записывают без знаменателей. Сначала пишется целая часть числа, справа от нее ставится запятая; первая цифра после запятой означает число десятых, вторая – сотых, третья – тысячных и т.д. Цифры, стоящие после запятой, называются десятичными знаками.

Бесконечной называется десятичная дробь, у которой после запятой бесконечно много цифр.

Каждое рациональное число может быть представлено в виде конечной или бесконечной десятичной дроби. Это достигается делением числителя на знаменатель.

Бесконечную десятичную дробь называют периодической , если у нее, начиная с некоторого места, одна цифра или группа цифр повторяется, непосредственно следуя одна за другой. Повторяющуюся цифру или группу цифр называют периодом и записывают в скобках. Например, .

Верно и обратное утверждение: любую бесконечную десятичную периодическую дробь можно представить в виде обыкновенной дроби.

Перечислим некоторые сведения о периодических дробях.

1. Если период дроби начинается сразу после запятой, то дробь называется чисто-периодической , если не сразу после запятой – смешанно-периодической .

Например, 1,(58) – чисто-периодическая дробь, а 2,4(67) – смешанно-периодическая.

2. Если несократимая дробь такова, что в разложении ее знаменателя на простые множители содержатся лишь числа 2 и 5, то запись числав виде десятичной дроби представляет собой конечную десятичную дробь; если в указанном разложении есть другие простые множители, то получится бесконечная десятичная периодическая дробь.

3. Если несократимая дробь такова, что в разложении ее знаменателя на простые множители не содержатся числа 2 и 5, то запись числав виде десятичной дроби представляет собой чисто-периодическую десятичную дробь; если в указанном разложении, наряду с другими простыми множителями, есть 2 или 5, то получится смешанно-периодическая десятичная дробь.

4. У периодической дроби период может быть любой длины, то есть содержать любое количество цифр.

1.3. Иррациональные числа

Иррациональным числом называется бесконечная десятичная непериодическая дробь.

Примерами иррациональных чисел служат корни из натуральных чисел, не являющихся квадратами натуральных чисел. Например,
,
. Иррациональными являются числа
;
. Множество иррациональных чисел обозначают буквой.

Пример 1.10. Доказать, что
– иррационально число.

Решение. Предположим, что
– рациональное число. Очевидно, оно не является целым, а поэтому
, где
и– несократимая дробь; значит, числа
ивзаимно простые. Так как
, то
, то есть
.