Глубокое сверление. Лазерное сверление микроотверстий в жаропрочных сплавах

Глубокое сверление. Лазерное сверление микроотверстий в жаропрочных сплавах

Выполняются заказы по лазерной резке широкого круга материалов, конфигураций и размеров.

Сфокусированное лазерное излучение позволяет резать практически любые металлы и сплавы, независимо от их теплофизических свойств. При лазерной резке отсутствует механическое воздействие на обрабатываемый материал и возникают незначительные деформации. Вследствие этого можно осуществлять лазерную резку с высокой точностью, в том числе и легкодеформируемых и нежестких деталей. Благодаря большой мощности лазерного излучения обеспечивается высокая производительность процесса реза. При этом достигается такое высокое качество реза, что в полученных отверстиях можно нарезать резьбу.

Широко применяется в заготовительном производстве. Основное преимущество лазерной резки - она позволяет переходить с одного типа деталей любой геометрической сложности на другой тип практически без затрат времени. По сравнению с традиционными методами резки и механообработки скорость различается в несколько раз. Из-за отсутствия теплового и силового воздействия на изготавливаемую деталь, она не претерпевает деформаций в процессе изготовления. Качество изготавливаемой продукции позволяет совершать сварку встык без смещений кромок среза и предварительной обработки соединяемых сторон.

Твердотельные лазеры неметаллические материалы режут значительно хуже газовых, однако имеют преимущество при резке металлов - по той причине, что волна длиной 1 мкм отражается хуже, чем волна длиной 10 мкм. Медь и алюминий для волны длиной 10 мкм - почти идеально отражающая среда. Но, с другой стороны, сделать CО2-лазер проще и дешевле, чем твердотельный.

Точность лазерной резки достигает 0,1 мм при повторяемости +0,05 мм, причем качество реза стабильно высокое, поскольку зависит только от постоянства скорости перемещения лазерного луча, параметры которого остаются неизменными.

Краткая характеристика реза: окалина обычно отсутствует, небольшая конусность (завист от толщина), получаемые отверстия круглые и чистые, возможно получение совсем небольших деталей, ширина реза 0,2-0,375 мм, прижоги незаметны, тепловое воздействие очень мало, имеется возможность резки неметаллических материалов.

Прошивка отверстий

Немаловажным фактором для лазерной резки является прошивка первоначального отверстия для ее начала. У некоторых лазерных установок имеется возможность с помощью процесса так называемой летающей прошивки в холоднокатаной стали толщиной 2 мм получать до 4 отверстий в секунду. Получение одного отверстия в более толстых (до 19,1 мм) листах из горячекатаной стали при лазерной резке осуществляют с помощью силовой прошивки примерно за 2 с. Применение обоих этих методов позволяет увеличить производительность лазерной резки до уровня, достигаемого на вырубных прессах с ЧПУ.

Пробивка отверстий

С помощью этого метода можно получать отверстия диаметром 0,2-1,2 мм при толщине материала до 3 мм. При соотношении высоты отверстий к их диаметру 16:1 лазерная пробивка превосходит по экономичности почти все другие методы. Объектами применения этой технологии являются: сита, ушки игл, форсунки, фильтры, ювелирные изделия (подвески, четки, камни). В промышленности с помощью лазеров осуществляется пробивка отверстий в часовых камнях и в волочильных фильерах, причем производительность достигает 700 тыс. отверстий в смену.

Скрайбирование

Часто используемым является режим несквозной резки, так называемое скрайбирование. Оно широко используется в промышленности, в частности, в микроэлектронике, для разделения кремниевых шайб на отдельные элементы (фрагменты) по заданному контуру. В этом процессе также оказывается существенным взаимная ориентация проекции вектора электрического поля падающего излучения и направления сканирования для обеспечения высокой эффективности и качества процесса.

Скрайбирование широко используется в промышленности (микроэлектроника, часовая промышленность и др.) для разделения тонких пластин поликора и сапфира, реже для разделения кремниевых шайб. При этом для осуществления дальнейшего механического разделения достаточно скрайбирования на глубину около трети от полной толщины разделяемой пластины.

Процессы микрообработки

Высокая степень автоматизации в последние годы позволила вновь на новой стадии использовать на практике такие процессы, как подгонка номиналов резисторов и пьезоэлементов, отжиг имплантированных покрытий на поверхности полупроводников, напыление тонких пленок, зонная очистка и выращивание кристаллов. Возможности многих процессов к настоящему моменту еще не до конца раскрыты.


Сверление отверстий в часовых камнях-с этого начиналась трудовая деятельность лазера. Речь идет о рубиновых камнях, которые используются в часах в качестве подшипников скольжения. При изготовлении таких подшипников требуется высверлить в рубине - материале весьма твердом и в то же время хрупком-отверстия диаметром всего 1-0,05 мм. Многие годы эта ювелирная операция выполнялась обычным механическим способом с использованием сверл, изготовленных из тонкой рояльной проволоки диаметром 40-50 мкм. Такое сверло делало до 30 тысяч оборотов в минуту и одновременно совершало при этом около ста возвратно-поступатель- ных перемещений. Для сверления одного камня требовалось до 10-15 мин.
Начиная с 1964 г. малопроизводительное механическое сверление часовых камней стало повсеместно заменяться лазерным сверлением. Конечно, термин «лазерное сверление» не надо понимать буквально; лазерный луч не сверлит отверстие-он его пробивает, вызывая интенсивное испарение материала. В настоящее время лазерное сверление часовых камней является обычным делом. Для этой цели применяются, в част-
29

ности, лазеры на стекле с неодимом. Отверстие в камне (при толщине заготовки 0,5-1 мм) пробивается серией из нескольких лазерных импульсов, имеющих энергию 0,5-1 Дж. Производительность работы лазерной установки в автоматическом режиме-камень в секунду. Это в тысячу раз выше производительности механического сверления!
Вскоре после своего появления на свет лазер получил следующее задание, с которым справился столь же успешно,-сверление (пробивание) отверстий в алмазных фильерах. Возможно, не все знают, что для получения очень тонкой проволоки из меди, бронзы, вольфрама используется технология протягивания металла сквозь отверстие соответствующего диаметра. Такие отверстия высверливают в материалах, обладающих особо высокой твердостью,-ведь в процессе протягивания проволоки диаметр отверстия должен сохраняться неизменным. Наиболее тверд, как известно, алмаз. Поэтому лучше всего протягивать тонкую проволоку сквозь отверстие в алмазе-сквозь так называемые алмазные фильеры. Лишь с помощью алмазных фильер удается получать сверхтонкую проволоку, имеющую диаметр всего 10 мкм. Но как просверлить тонкое отверстие в таком сверхтвердом материале, как алмаз? Механически это сделать очень трудно-для механического сверления одного отверстия в алмазной фильере требуется до десяти часов. Зато, как оказалось, совсем нетрудно пробить это отверстие серией из нескольких мощных лазерных импульсов. />Сегодня лазерное сверление широко применяется не только для особо твердых материалов, но и для материалов, отличающихся повышенной хрупкостью. Лазерное сверло оказалось не только мощным, но и весьма деликатным «инструментом». В качестве примера расскажем о проблеме сверления отверстий в подложках микросхем, изготавливаемых из глиноземной керамики. Керамика необычайно хрупка. По этой причине механическое сверление отверстий в подложке микросхемы производили, как правило, на «сыром» материале. Обжигали керамику уже после сверления. При этом происходила некоторая деформация изделия, искажалось взаимное расположение высверленных отверстий. Проблема была решена с появлением лазерных сверл. Используя их, можно работать с керамическими подложками, которые уже прошли об-
30

Так выглядит в разрезе отверстие в алмазной фильере. Лазерными импульсами пробивают черновой канал в алмазной заготовке. Затем, обрабатывая канал ультразвуком, шлифуя и полируя, придают ему необходимый профиль. Проволока, получаемая при протягивании через фильеру, имеет диаметр d
Эти аккуратные отверстия диаметром 0,3 мм пробиты в пластинке из глиноземной керамики толщиной 0,7 мм с помощью С02-лазера

жиг. С помощью лазеров пробивают в керамике очень тонкие отверстия-диаметром всего 10 мкм. Заметим, что механическим сверлением такие отверстия получить нельзя.
То, что сверление - призвание лазера, ни у кого не вызывало сомнений. Здесь у лазера фактически не оказалось достойных конкурентов, особенно когда речь шла о сверлении особо тонких и особо глубоких отверстий, когда отверстия надо сверлить в очень хрупких или очень твердых материалах. Прошло сравнительно немного времени и стало ясно, что лазерный

луч может успешно применяться не только для сверления, но и для многих других операций по обработке материалов. Так что сегодня мы можем говорить о возникновении и развитии новой технологии - лазерной.

Технические характеристики:

Максимальный размер заготовки, мм

600 х 650 (другие по согласованию)

Длина волны UV-лазера, нм

Частота импульсов, кГц

Мощность UV-лазера(Вт) при 60 кГц, не менее

Точность позиционирования по осям Х, Y, мкм

Мин. диаметр отверстия, мкм

от 50 (зависит от настроек станка)

Макс. отношение диаметр/глубина отверстия

Поле обработки (без движения осей станка), мм

Макс.: 40х40

Макс. компенсация изменения высоты поверхности заготовки, мм

Габариты и вес:

Размеры установки (Ш-Г-В)

1320 х 1286 х 2286 мм

Вес установки

Станок предназначен для применения в производстве высокоточных печатных плат (ПП), гибко-жёстких ПП, гибких ПП и гибких кабелей, ПП со встроенными компонентами.

Основной отличительной особенностью станка является использование в качестве излучателя УФ лазера с длинной волны 355 нм. Применение УФ лазера с длиной импульса ~ 35 нс позволяет производить обработку различных видов материалов, обеспечивая при этом высочайшее качество обработки (минимизация нагара, гибкое управление процессом, остановка точно на заданном слое меди при выполнении глухих отверстий). Кроме того, в отличие от технологии использующей ИК лазер, применение станка LaserFlex позволяет избавиться от подготовительных операций, необходимых для обработки меди на ИК лазере (например, оксидирование) и постобработки (удаление нагара).

Таким образом, универсальный станок LaserFlex является оптимальным средством для решения таких задач, как:

  • Удаление полимерных покрывных пленок
  • Сверление и резка фольгированных медью полимерных ламинатов
  • Обработка гибких и гибко-жестких ПП
  • Сверление и резка внутренних слоев и препрегов, например, FR4
  • Отделение или «высвобождение» проводников и структурирование полостей
  • Сверление микроотверстий в т.ч. глухих

Скорость, точность и качество обработки обеспечивают следующие узлы:

  • Стабильное гранитное основание, предназначенное для компенсации механических моментов при движении осей и для температурной стабилизации параметров движения
  • Высокодинамичные линейные двигатели (оси X, Y)
  • Встроенный индикатор мощности излучения лазера, позволяющий быстро и точно корректировать параметры источника излучения, опираясь на фактическое значение выходной мощности лазера. Позволяет максимально точно подобрать режим обработки и поддерживать его в любых условиях: при нормальной эксплуатации, в случае загрязнения оптической системы, между регламентными работами и даже в случае потери мощности источником излучения вследствие износа в ходе длительной эксплуатации.

Удобство в использовании и безопасность:

Управляемый при помощи сенсорного дисплея с дружелюбным интерфейсом специализированного программного обеспечения станок LaserFlex будет совмещать в себе простоту и удобство в использовании с

поистине впечатляющей производительностью. Простая и интуитивно-понятная управляющая оболочка избавляет от необходимости проводить длительное обучение операторов.

Станок оснащен всеми необходимыми средствами защиты, удовлетворяющими мировым стандартам. Это обеспечивает, при соблюдении техники безопасности, безопасную и безаварийную работу на станке.

Фиксация и базирование заготовки:

Для фиксации заготовки станок оснащен вакуумным столом, что позволяет избежать замятия, и волнистости при фиксации гибких и гибко-жестких заготовок.

Положения заготовки на столе определяется по меткам с использованием CCD-камеры.

Форматы данных:

В качестве входных используются данные в форматах: DXF, Gerber, Bitmap.

В качестве дополнительного оборудования могут быть приобретены:

  • Компрессор с системой фильтров для обеспечения сжатым воздухом требуемого качества
  • Источник бесперебойного питания

Станки серии Pico

Технические характеристики

Управляющий интрефейс

Длина волны лазера, нм

Мощность Лазера, Вт

Длительность импульса, пс

Система крепления заготовок

Вакуумный стол

Зона обработки, мм

Количество обрабатывающих станций

Повторяемость, мкм

Точность позиционирования, мкм

Габариты и вес:

Общий вес, кг

Габаритные размеры (ДШВ), мм

2100х1920х1720

Назначение и принцип действия

Лазерный обрабатывающий центр Picodrill – это высокопроизводительная и высокоточная установка для сверления, нарезки и структурирования различных материалов. Применение лазера пикосекундных импульсов высокой энергии делает возможным холодное прецизионное снятие материала. В качестве опции предлагается полностью автоматический режим обработки.

Возможные области применения при производстве ПП

  • Сверление микроотверстий в заготовках печатных плат, до 4000 в секунду
  • Микроструктурирование, прецизионная обработка деталей из стекла и керамики
  • Нарезка и сверление электронных компонентов, полупроводниковых подложек
  • Сверление микроотверстий

Качество обработки

Благодаря пикосекундному лазеру возможно холодное

удаление практически любого материала. Средняя мощность лазера 25 Вт и пиковая мощность импульса макс. до 70 МВт в импульсе, обеспечивают возможность удаления мельчайших объемов материала без каких-либо остаточных продуктов горения.

Автоматическое управление процессом

  • Установка оснащена сенсорами для компенсации толщины компонентов.
  • Автоматическая корректировка фокуса осуществляется за счет автоматической подстройки оси Z.
  • Устройства измерения энергии лазера обеспечивают обратную связь и автоматическую подстройку энергии лазера. Точность может быть значительно улучшена при
  • использовании системы сканирования по 3 осям.

Контроль при помощи CCD-камеры

Обе рабочие станции располагают CCD-камерами высокого разрешения с кольцевой светодиодной подсветкой. Это делает возможной автоматическую корректировку смещения, поворота, сжатия или растяжения заготовки.

Опции

  • Две или четыре сканирующие головки
  • Пикосекундный лазер различной мощности и длины волны (1064, 532, 355 нм)
  • Тенденции развития современной электроники ставят перед производством печатных плат (ПП) задачи нового уровня. Прогресс мобильных технологий и растущий спрос на такие как устройства смартфоны и ультрабуки на сегодняшний день требуют от ПП максимальной миниатюризации, увеличения плотности соединений и при этом высочайшего качества.

    Стремительное развитие лазерной техники и технологии открывает для производства печатных плат дверь в завтрашний день, не оставляя без внимания сегодняшний. Лазерное оборудование применяется не только там, где заканчиваются возможности механической обработки (сверление микроотверстий от 50 мкм, обработка материалов тяжело поддающихся механической обработке, и т.п.), но и для выполнения доступных механике операций, с большей точностью и производительностью (сверление микроотверстий со скоростью до 1000 отв./сек, сверх точное сверление и фрезерование на заданную глубину). При этом возможность регулировать режим обработки, как за счет мощности излучения, так и за счет его временных и частотных характеристик позволяет добиться высочайшего качества обработки.

    В состав бетонных смесей, используемых при строительстве, входят такие крупнозернистые материалы, как щебень и гравий. Кроме того, бетонные конструкции армируют. Поэтому инструмент при сверлении должен преодолевать металлические и каменные преграды. Качество отверстия, просверленного в бетоне, напрямую зависит от правильного выбора инструмента и способа сверления.

    Сухой способ сверления бетона – это процесс формирования отверстия без применения воды или какой-либо другой охлаждающей жидкости. На сегодняшний день сложно себе представить более надежный, безопасный и точный метод, чем сверление бетонных поверхностей инструментами с алмазным напылением . Такое сверление выполняется специальными установками, которые в свою очередь требуют определенных навыков обращения с ними. Поэтому за помощью лучше обращаться к профессионалам, которые хорошо знают, как это сделать быстро и качественно.

    Алмазный инструмент позволяет сверлить отверстий диаметром от 15 до 1000 мм и глубиной до 5 м

    Перечень задач, решаемых с помощью сверления, очень широк.

    В основном, алмазное сверление используют при создании отверстий в перекрытиях и стенах для:

    • труб отопления, газоснабжения, электроснабжения;
    • систем противопожарной безопасности;
    • вентиляционных систем и кондиционеров;
    • различных коммуникаций (интернет, телефон и пр.);
    • установки ограждений и перил на лестничных проемах;
    • монтажа химических анкеров;
    • монтажа оборудования для бассейнов.

    С помощью технологии алмазного сверления можно также выполнять резку проемов в перекрытиях и стенах под вентиляционные короба, двери, окна и прочие нужды в том случае, когда нет возможности использовать для этого специальное оборудование для резки бетона.

    Технология данного метода заключается в том, что по периметру будущего проема высверливаются отверстия диаметром 130-200 мм. Затем края проема выравниваются с помощью перфоратора или цементно-песчаной смеси. Несмотря на то, что этот способ требует больших затрат времени, результат практически ничем не отличается от резки. Называется такая технология строчным алмазным сверлением.

    Сверление бетона без удара

    Технология алмазного сверления основывается на уникальной особенности алмаза – его непревзойденной твердости. Режущая кромка сверлильного инструмента покрыта алмазосодержащим напылением, так называемой «матрицей». В процессе сверления алмазные сегменты инструмента производят в зоне реза безударное локальное разрушение. Одновременно с разрушением бетона происходит истирание и самой матрицы, но так как она многослойна, то на ее поверхность выступают новые алмазные зерна и рабочая кромка долгое время остается острой.

    Алмазное сверление имеет одно очень важное преимущество – полное отсутствие жестких воздействий на бетонную поверхность и невыносимого шума . Такие положительные качества делают алмазную технологию незаменимой при проведении ремонтных работ в квартирах многоэтажных домов. Алмазное сверление позволяет избежать образования трещин на поверхностях стен, которые рано или поздно приводят к полной утрате их несущих способностей, снижению уровня тепло- и звукоизоляции, ухудшению прочностных характеристик.

    Поскольку при монолитном строительстве невозможно заранее заложить все технологические отверстия под различные нужды, сверление алмазным инструментом становится единственным способом создания проемов при прокладке труб отопления, водоснабжения и прочих коммуникаций. Использование отбойного молотка для подобной работы является не только экономически невыгодным, но и крайне небезопасным , поскольку динамические нагрузки на армирующие пояса способны вызвать образование трещин в бетонных поверхностях.

    Алмазный инструмент популярен благодаря такому его достоинству, как способность сверлить бетон с любой степенью армирования

    Алмазное сверление может производиться двумя способами: с применением воды, уменьшающей нагрев инструмента, а также «всухую». Технологически сухое сверление намного проще и поэтому удобнее. Выполняют его с помощью специальных коронок, называемых «сухорезами» . В корпусе этих коронок имеются сквозные отверстия, обеспечивающие отвод тепла и уменьшающие риск деформации.

    В отличие от инструмента для «мокрого сверления», алмазные сегменты которого крепятся к рабочей поверхности с помощью припоя, коронки для сухого сверления изготавливают исключительно с применением лазерной сварки.

    Почему так важна лазерная сварка алмазных сегментов при сухом способе сверления? Ответ очень прост: температура в зоне сверления без использования охлаждающей жидкости очень быстро поднимается до 600 градусов.

    Такая температура является точкой плавления обычного припоя, поэтому сегмент, припаянный с его помощью, напросто отлетает и остается в отверстии. Для продолжения работы сегмент необходимо достать из отверстия, поскольку просверлить его невозможно. Инструмент с сегментами, приваренными лазерной сваркой, способен выдерживать достаточно высокие температуры и не «засаливается» во время работы .

    Идею сухого сверления отверстий в бетонных поверхностях одной из первых предложила компания Husqvarna. Ею был разработан для этого способа специальный переходник с возможностью подключения к пылесосу.

    Пылесос вытягивает пыль, образовавшуюся в ходе сверления, и одновременно охлаждает коронку . Так как переходник подключается к основанию коронки, то пыль собирается непосредственно в зоне сверления и не распространяется по всему помещению.

    Преимущества сухого сверления

    Основное преимущество сухого алмазного сверления – возможность использования данного способа в тех случаях, когда применение водяного охлаждения недопустимо. Кроме того, установку для сухого сверления можно использовать в относительно небольших помещениях . Установка для мокрого способа занимает намного большую площадь, поскольку она оснащена, как правило, довольно внушительной емкостью для воды, используемой для охлаждения инструмента.

    Сухой способ сверления отверстий в бетоне особенно актуален тогда, когда работы проводятся:

    • в непосредственной близости от электропроводки;
    • на объектах, где отсутствует водоснабжение;
    • в помещениях с чистовой отделкой;
    • с риском затопления водой нижних помещений.

    К сожалению, сухой способ имеет немало недостатков. Главный из них – невозможность работы с максимальной производительностью и степенью нагрузки. Это связано с быстрым нагревом алмазных сегментов, что приводит к снижению ресурсоемкости инструмента и его быстрому выходу из строя. При сухом способе процесс сверления периодически прерывается для охлаждения инструмента воздушно-вихревыми потоками .

    Сухое сверление имеет ограничения по диаметру и глубине отверстий

    Таким образом, мокрое сверление является преимущественным способом, несмотря на то, что его применение влечет дополнительные усилия по организации работ, а именно, необходимо заботиться о подаче и отводе воды. Однако, при проведении работ достаточно большого объема, дополнительные усилия, связанные с подачей воды, будут не так обременительны по сравнению с издержками сухого способа. Иначе говоря, намного легче позаботиться о подаче и отводе воды, чем производить сверление с большими затратами усилий и времени .

    Используемый инструмент для обработки

    Для сухого сверления используют алмазные коронки, не нуждающиеся в дополнительном охлаждении. Они охлаждаются за счет воздушных потоков и качественной смазки. Коронка имеет вид пустотелого металлического цилиндра. На одном конце этого стакана располагается режущая кромка с алмазным напылением. Другая или тыльная сторона коронки предназначена для крепления в используемом оборудовании и имеет заглушку.

    Коронка во время сверления производит круговые режущие движения. Эти движения происходят на большой скорости и под давлением, поэтому инструмент очень точно разрушает нужный участок бетонной поверхности. От силы давления напрямую зависит скорость сверления и изнашиваемость инструмента. Очень высокое давление приводит к быстрому разрушению инструмента, а очень низкое существенно снижает скорость сверлильных работ . Поэтому очень важен правильный расчет силы механического воздействия. При расчете этой силы необходимо учитывать общую площадь алмазных сегментов и тип обрабатываемого материала.

    Существует огромное количество разновидностей алмазных коронок. В зависимости от размеров их делят на:

    • малогабаритные;
    • средние;
    • крупногабаритные;
    • сверхрупные.

    К малогабаритным относят коронки диаметром 4-12 мм. Их, в основном, используют для сверления небольших отверстий под электропроводку. Средние насадки имеют диаметр 35-82 мм и используются для сверления отверстий под розетки, небольшие трубы и т. п.

    Крупногабаритные коронки диаметром 150-400 мм применяют для сверления отверстий в капитальных железобетонных конструкциях, например, для ввода высоковольтных электрокабелей или канализации. Насадки с диаметрами 400-1400 мм находят применение при разработке довольно мощных объектов инфраструктуры. На самом деле и 1400 мм для коронок – не предел.

    Под заказ можно сделать и более крупную насадку. Важным параметром является также длина сверлильного инструмента. Длина самых коротких насадок не превышает 15 см . Длина коронок среднего класса составляет 400-500 см.

    В зависимости от формы режущей поверхности различают корончатые сверла по бетону следующих видов:

    • кольцевые . Имеют вид сплошной алмазной матрицы в форме кольца, прикрепленной к корпусу. Обычно такие сверла имеют небольшой диаметр, но бывают и исключения;
    • зубчатые являются самым распространенным видом корончатых сверл. ;
    • комбинированные . Такие коронки используются, в основном, для специальных видов работ по бетону.

    Режущая часть зубчатых коронок состоит из отдельных алмазных элементов, которых может быть от 3 до 32

    Материал, из которого изготавливаются сегменты и в котором закрепляются алмазы, называют связкой, а на языке профессионалов – матрицей. Она придает алмазному сегменту форму и прочность. Матрица во время практического применения должна изнашиваться таким образом, чтобы «рабочие» алмазы после затупления отламывались, а в качестве их «замены» на режущую поверхность выступали новые и острые алмазы.

    В зависимости от расположения алмазов в матрице режущих сегментов коронки делятся на:

    • однослойные . Матрица в этом случае имеет всего один поверхностный слой алмазных резцов. Их плотность составляет не более 60 шт/карат. Однослойные алмазные насадки считаются самыми недолговечными. Их применяют, в основном, для сверления бетона без арматуры;
    • многослойные . Плотность микрорезцов в таких матрицах может составлять до 120 шт/карат. Многослойные коронки называют также самозатачивающимися. При износе поверхностного слоя алмазов обнажается следующий слой;
    • импрегнированные . Такие коронки также имеют матрицу с несколькими слоями алмазных зерен, но их плотность составляет около 40-60 шт/карат.

    Несмотря на разнообразие типов алмазного инструмента, структура его конструкции идентична. Как правило, он состоит из несущего металлического корпуса и алмазосодержащего слоя, который непосредственно взаимодействует с материалом и является основой инструмента. Этот слой представляет собой связку из алмазов и металлического порошка.

    Чем более точно подобран состав связки, тем эффективнее и качественнее будет работать алмазный инструмент в целом . Стандартной рецептуры изготовления связки не существует.

    Каждый крупный производитель разрабатывает собственную формулу алмазоносного слоя для каждого инструмента и тем самым обеспечивает ему уникальность.

    Наибольшей популярностью сейчас пользуются расходные материалы следующих производителей:

    • Bosh . Продукция, выпускаемая под этим брендом, обеспечивает высококачественное проведение строительных работ, поскольку отличается надежностью и продолжительным сроком эксплуатации;
    • Husqvarna . Этот производитель славится тем, что при изготовлении алмазного инструмента использует инновационные технологии;
    • Cedima является одним из ведущих производителей режущего инструмента для бетона;
    • Rothenberger . Данная компания занимается производством алмазного оборудования для сверления и комплектующих частей к нему;
    • Hilti специализируется на производстве оборудования очень высокого качества и постоянно совершенствует процесс своего производства;
    • Энкор – отечественная компания. Изначально она занималась продажей иностранного оборудования, но с 2007 года стала производить собственные инструменты.

    Фирма Husqvarna является пионером в области алмазного сверления промышленного бетона

    Вращение коронки происходит за счет силы оборудования для сверления. Коронку можно устанавливать как на обычной дрели, так и на специальной установке. Установка вращает инструмент с высокой скоростью, но при этом отсутствуют ударные воздействия. Насадка просто вращается и постепенно давит на бетонную поверхность. Таким образом, она миллиметр за миллиметром вгрызается в толщу бетона.

    Поскольку коронка внутри пустотелая, то в бетон врезаются только ее стенки. Это существенно ускоряет и упрощает рабочий процесс . В поверхность стены коронка углубится до необходимого положения уже за несколько минут и тогда ее надо будет просто выдернуть вместе с вырезанным куском бетона.

    Основные этапы техпроцесса

    Алгоритм работы по сверлению бетонных конструкций выглядит следующим образом:

    • подбор коронки;
    • сборка сверлильной установки;
    • подготовка рабочей площадки;
    • разметка рабочей поверхности с точным указанием центра сверления;
    • монтаж установки на рабочей поверхности;
    • установка сверлильной коронки;
    • выполнение сверления;
    • завершение сверления;
    • проверка качества работы.

    Установку необходимо собирать очень тщательно. Особенное внимание рекомендуется обращать на крепление сверлильного инструмента . Очень важно, чтобы во время сверления вокруг не было ничего лишнего, поэтому рабочую площадку необходимо очистить от мусора и прочих ненужных предметов. Разметку рабочей поверхности начинают с вычерчивания двух пересекающихся перпендикулярных линий. Затем от их центра строят окружность необходимого диаметра. Эта окружность и будет местом установки коронки.

    Во время сверления также необходимо учитывать некоторые нюансы. Для начала коронку необходимо очень тщательно отрегулировать, поместив точно в нарисованную окружность. Сначала на протяжении 4-8 секунд производят пробное сверление. Таким образом, создается небольшой канал, который упрощает установку коронки и выполнение капитального сверления.

    В конце рабочего процесса коронку вынимают и проверяют степень ее изношенности. Центральная часть вырезанного отверстия удаляется вместе с коронкой , но иногда бывает необходимо немножко поддеть ее ломом или перфоратором. Интересен также тот факт, что изношенную насадку можно отремонтировать в специальной мастерской. Качество выполненной работы напрямую зависит от качества используемого оборудования. Одними из лучших считаются бурильные установки от таких производителей, как Hilti, Husqvarna, Cedima, Tyrolit.

    Ресурс алмазного инструмента зависит во многом от типа материала, в котором сверлится отверстие, от типа алмазного сегмента и от правильности использования бурильной установки. Как правило, коронки большого диаметра имеют и больший рабочий ресурс, что связано с большим количеством алмазных сегментов . Средний ресурс алмазных коронок диаметром 200 мм с хорошей насыщенностью режущих сегментов составляет при сверлении железобетона порядка 18-20 погонных метров.

    Нежесткое крепление установки и нструмента приводят к отламыванию режущих сегментов инструмента

    При этом основной расход алмазных сегментов приходится на преодоление арматуры. Такие факторы, как чрезмерно сильная или неравномерная подача коронки или ее биение при нежестком закреплении опорной стойки, могут очень сильно сократить ресурс насадки или даже вовсе вывести ее из строя.

    Лазерное сверление бетона

    Промышленное сверление отверстий лазером началось вскоре после его изобретения. Сообщение об использовании лазера для сверления небольших отверстий в алмазных зернах появилось еще в 1966 году. Достоинство лазерного сверления наиболее ярко проявляется при создании отверстий глубиной до 10 мм и диаметром в десятые-сотые доли миллиметр а. Именно в таком диапазоне размеров, а также при сверлении хрупких и твердых материалов преимущество лазерной технологии неоспоримо.

    Сверлить отверстия лазером можно в любых материалах. Для этой цели используют, как правило, импульсные лазеры с энергией импульса 0,1-30 Дж. С помощью лазера можно сверлить глухие и сквозные отверстия с разными формами поперечного сечения . На качество и точность изготовления отверстия влияют такие временные параметры импульса излучения, как крутизна его переднего и заднего фронтов, а также его пространственные характеристики, обусловленные угловым распределением в пределах диаграммы направленности и распределением интенсивности излучения в плоскости лазерной апертуры.

    На данный момент существуют специальные методы формирования вышеперечисленных параметров, которые позволяют создавать отверстия различной формы, например, треугольные и точно соответствующие заданным качественным характеристикам. На пространственную форму отверстий в их продольном сечении существенное влияние оказывает расположение фокальной плоскости объектива относительно поверхности мишени, а также параметры фокусирующей системы. Таким образом, можно создавать цилиндрические, конические и даже бочкообразные отверстия.

    За последние двадцать лет произошел резкий скачок мощности излучения лазеров. Связано это с появлением и дальнейшим развитием компактных лазеров новой архитектуры (волоконных и диодных лазеров). Относительная дешевизна излучателей, мощность которых составляет более 1 кВт, обеспечила их коммерческую доступность для специалистов, занимающихся исследованиями в различных сферах. В результате этих исследований мощное лазерное излучение стали применять для резки и сверления таких твердых материалов, как бетон и природные камни.

    Лазерные технологии, свободные от шума и вибраций, наиболее эффективно применяются в сейсмических районах при создании отверстий в уже существующих бетонных зданиях. Их там используют для укрепления аварийных домов с помощью стальной стяжки, а также при реставрации памятников архитектуры. В атомной отрасли мощное лазерное излучение широко используют для дезактивации бетонных ядерных сооружений, которые уже выведены из эксплуатации. Пользователей в этом случае привлекает низкое пылевыделение во время обработки бетонных конструкций. Важную роль играет также дистанционное управление процессом, т. е. удаленное расположение оборудования от объекта.

    Для сверления отверстий в бетонных стенах и прочих поверхностях используют лазерную электродрель . Состоит она из электродвигателя, редуктора, шпиндель-вала, лазерного устройства, инструмента для сверления. Последний имеет вид шнека, который непосредственно связан с корпусом редуктора. На одном конце этого шнека закреплена высокотемпературная коронка, а другой его конец соединен со шпиндель-валом. Лазерное устройство располагается в верхней части корпуса редуктора.

    Лазерный луч существенно увеличивает скорость сверления в твердых бетонных стенах и гранитных блоках

    Меры безопасности

    Во время сверления отверстий в бетонных конструкциях следует использовать индивидуальные средства защиты. К ним относятся очки, брезентовые рукавицы, респиратор. Оператор должен быть одет в рабочую одежду из плотной ткани и резиновую обувь. Во время работы надо следить, чтобы какие-либо элементы одежды не попали в движущиеся части сверлильного оборудования .

    По статистике наибольшее количество травм получают рабочие на стройплощадках из-за неисправности электроинструмента или его неправильного использования. Поэтому электроинструмент должен быть исправен. Кроме того, перед каждым его применением необходимо проверять питающий кабель на наличие повреждений. Во время проведения работ кабель должен располагаться так, чтобы его нельзя было каким-либо образом повредить.

    Сверлить бетон наиболее безопасно стоя на полу, но, к сожалению, так получается не всегда. Таким образом можно просверлить отверстие лишь на уровне человеческого роста. Если отверстие располагается выше, необходимо использовать дополнительное основание. Основным правилом при этом является надежность основания. Оно должно обеспечивать рабочему во время работы устойчивое ровное положение. Дополнительной мерой безопасности при проведении работ на высоте является удаление любых предметов из рабочей зоны, о которые можно пораниться при случайном падении.

    При сверлении отверстий в бетонных стенах высока вероятность повреждения различных коммуникаций. Это может быть электропроводка, трубы центрального отопления и пр. Электрический провод под напряжением можно легко обнаружить с помощью детектора скрытой проводки.

    При сверлении отверстий с помощью лазера следует избегать попадания различных частей тела в его зону действия, чтобы не получить ожоги. Нельзя смотреть на сам лазерный луч или его отражение, чтобы не повредить роговицу глаз. По этой же причине необходимо работать только в специальных защитных очках. При работе с лазерным оборудованием следует соблюдать те же правила безопасности, что и при использовании любого электрического инструмента.

    Стоимость работ

    На формирование цены услуг по сверлению бетона оказывают влияние такие факторы, как:

    • диаметр требуемого отверстия . С увеличением диаметра увеличивается и стоимость сверления;
    • материал поверхности , в которой будет производиться сверление. В железобетонных конструкциях сверление обходится дороже, чем в стенах из кирпича;
    • глубина сверления . Естественно, что чем больше длина будущего отверстия, тем дороже будет стоить само сверление.

    На стоимость сверлильных работ могут оказывать влияние и дополнительные факторы. Например, сверление на высоте требует применения дополнительного оборудования. Сверление под углом невозможно выполнить без использования специального инструмента.

    Стоимость работ может также увеличиться, если они будут проводиться на открытом воздухе и при неблагоприятных погодных условиях

    Ориентировочная стоимость сверления отверстий алмазным инструментом:

    Диаметр отверстия, мм Стоимость 1 см сверления, руб
    Кирпич Бетон Железобетон
    16 – 67 20 26 30
    72 – 112 22 28 35
    122 – 142 24 30 37
    152 – 162 28 35 44
    172 – 202 39 50 66
    250 57 77 94
    300 72 88 110
    400 110 135 155
    500 135 175 195
    600 145 195 210

    Выводы

    Алмазные технологии сегодня являются, бесспорно, самым безопасным, быстрым и экономически выгодным вариантом сверления отверстий в самых твердых строительных материалах. Используя кольцевые сверла можно создавать отверстия точно соответствующие заданному диаметру. По форме отверстия также получаются идеальными и не требуют никакой дополнительной обработки, что существенно экономит время, а самое главное – средства заказчика услуги.

    Такие достоинства алмазного сверления, как отсутствие шума и вибраций дают возможность производить работы не только на больших строительных объектах, но и в жилых помещениях, которые находятся как на стадии ремонта, так и в отделанном (чистовом) состоянии. Благодаря алмазному инструменту и профессиональному оборудованию, настенные и напольные покрытия при проведении работ в чистом помещении полностью сохраняют свой первозданный вид.

    Практические нюансы сухого сверления бетона алмазной коронкой представлены в видео:

    Сверление отверстий в ча­совых камнях - с этого начиналась трудовая деятель­ность лазера. Речь идет о рубиновых камнях, которые используются в часах в качестве подшипников сколь­жения. При изготовлении таких подшипников требует­ся высверлить в рубине - материале весьма твердом и в то же время хрупком - отверстия диаметром всего 0,1-0,05 мм. Многие годы эта ювелирная операция выполнялась обычным механическим способом с ис­пользованием сверл, изготовленных из тонкой рояль­ной проволоки диаметром 40-50 мкм. Такое сверло делало до 30 тысяч оборотов в минуту и одновременно совершало при этом около ста возвратно-поступатель­ных перемещений. Для сверления одного камня требо­валось до 10-15 мин. Как убрать пробки в ушах - серная пробка nmedik.org/sernaya-probka.html .

    Начиная с 1964 г. малопроизводительное механи­ческое сверление часовых камней стало повсеместно заменяться лазерным сверлением. Конечно, термин «ла­зерное сверление» не надо понимать буквально; лазерный луч не сверлит отверстие - он его пробивает, вызы­вая интенсивное испарение материала. В настоящее время лазерное сверление часовых камней является обычным делом. Для этой цели применяются, в частности, лазеры на стекле с неодимом. Отверстие в камне (при толщине заготовки 0,5-1 мм) пробивается серией из нескольких лазерных импульсов, имеющих энергию 0,5-1 Дж. Производительность работы лазер­ной установки в автоматическом режиме -камень в секунду. Это в тысячу раз выше производительности механического сверления!

    Вскоре после своего появления на свет лазер полу­чил следующее задание, с которым справился столь же успешно, - сверление (пробивание) отверстий в алмаз­ных фильерах. Для полу­чения очень тонкой проволоки из меди, бронзы, вольф­рама используется технология протягивания металла сквозь отверстие соответствующего диаметра. Такие отверстия высверливают в материалах, обладающих особо высокой твердостью, - ведь в процессе протяги­вания проволоки диаметр отверстия должен сохра­няться неизменным. Наиболее тверд, как известно, алмаз. Поэтому лучше всего протягивать тонкую про­волоку сквозь отверстие в алмазе - сквозь так называе­мые алмазные фильеры. Лишь с помощью алмазных фильер удается получать сверхтонкую проволоку, имеющую диаметр всего 10 мкм. Но как просверлить тонкое отверстие в таком сверхтвердом материале, как алмаз? Механически это сделать очень трудно - для механического сверления одного отверстия в алмазной фильере требуется до десяти часов. Зато, как оказа­лось, совсем нетрудно пробить это отверстие серией из нескольких мощных лазерных импульсов.

    Сегодня лазерное сверление широко применяется не только для особо твердых материалов, но и для материалов, отличающихся повышенной хрупкостью. Лазерное сверло оказалось не только мощным, но и весьма деликатным «инструментом». Пример: применение лазера при сверлении отверстий в подложках микросхем, изготавливаемых из глинозем­ной керамики. Керамика необычайно хрупка. По этой причине механическое сверление отверстий в подложке микросхемы производили, как правило, на «сыром» материале. Обжигали керамику уже после сверления. При этом происходила некоторая деформация изде­лия, искажалось взаимное расположение высверлен­ных отверстий. Проблема была решена с появлением лазерных сверл. Используя их, можно работать с керамическими подложками, которые уже прошли обжиг. С помощью лазеров пробивают в керамике очень тонкие отверстия - диаметром всего 10 мкм. Механическим сверлением такие отверстия полу­чить нельзя.

    То, что сверление - призвание лазера, ни у кого не вызывало сомнений. Здесь у лазера фактически не оказалось достойных конкурентов, особенно когда речь шла о сверлении особо тонких и особо глубоких отверстий, когда отверстия надо сверлить в очень хрупких или очень твердых материалах.

    4. Лазерная резка и сварка.

    Лазерным лучом можно резать решительно все: ткань, бумагу, дерево, фанеру, резину; пластмассу, керамику, листовой асбест, стекло, листы металла. При этом можно получать аккуратные разрезы по сложным профилям. При резке возгорающихся материалов место разреза обдувают струёй инертного газа; в результате получается гладкий, необожженный край среза. Для резки обычно используют непрерывно генерирующие лазеры. Нужная мощность излучения зависит от материала и толщины заготовки. Например, для резки досок толщиной 5 см применялся СО2-лазер мощностью 200 Вт. Ширина разреза составляла всего 0,7 мм; опилок, естественно, не было.

    Для резки металлов нужны лазеры мощностью в несколько киловатт. Требуемую мощность можно сни­зить, применяя метод газолазерной резки - когда одно­временно с лазерным лучом на разрезаемую поверх­ность направляется сильная струя кислорода. При горении металла в кислородной струе (за счет происхо­дящих в этой струе реакций окисления металла) выде­ляется значительная энергия; в результате может использоваться лазерное излучение мощностью всего 100-500 Вт. Кроме того, струя кислорода сдувает и уносит из зоны разрезания расплав и продукты сгора­ния металла.

    Первый пример такого рода резки - ла­зерный раскрой тканей на ткацкой фабрике. Установка включает СО2-лазер мощностью 100 Вт, систему фоку­сировки и перемещения лазерного луча, ЭВМ, устрой­ство для натяжения и перемещения ткани. В процессе раскроя луч перемещается по поверхности ткани со скоростью 1 м/с. Диаметр сфокусированного светово­го пятна равен 0,2 мм. Перемещениями луча и самой ткани управляет ЭВМ. Установка позволяет, напри­мер, в течение часа раскроить материал для 50 костю­мов. Раскрой выполняется не только быстро, но и весьма точно; при этом края разреза оказываются гладкими и упрочненными. Второй пример - автомати­зированное разрезание листов алюминия, стали, тита­на в авиационной промышленности. Так, СО2-лазер мощностью 3 кВт разрезает лист титана толщиной 5 мм со скоростью 5 см/с. Применяя кислородную струю, получают примерно тот же результат при мощности излучения 100-300 Вт.