В альдегидной группе имеется название связь. Альдегиды

В альдегидной группе имеется название связь. Альдегиды

Среди кислородсодержащих органических соединений огромное значение имеют целых два класса веществ, которые всегда изучают вместе за схожесть в строении и проявляемых свойствах. Это альдегиды и кетоны. Именно эти молекулы лежат в основе многих химических синтезов, а их строение достаточно интересное, чтобы стать предметом изучения. Рассмотрим подробнее, что же представляют собой эти классы соединений.

Альдегиды и кетоны: общая характеристика

С точки зрения химии, к классу альдегидов следует относить органические молекулы, содержащие кислород в составе функциональной группы -СОН, называемой карбонильной. Общая формула в этом случае будет выглядеть так: R-COH. По своей природе это могут быть как предельные, так и непредельные соединения. Также среди них встречаются и ароматические представители, наравне с алифатическими. Количество атомов углерода в радикальной цепи варьируется в достаточно широких пределах, от одного (формальдегид или метаналь) до нескольких десятков.

Кетоны также содержат карбонильную группу -СО, однако соединена она не с катионом водорода, а с другим радикалом, отличным или идентичным тому, что входит в цепь. Общая формула выглядит так: R-CO-R , . Очевидно, что альдегиды и кетоны схожи по наличию функциональной группы такого состава.

Кетоны также могут быть предельными и непредельными, да и проявляемые свойства сходны с близкородственным классом. Можно привести несколько примеров, иллюстрирующих состав молекул и отражающих принятые обозначения формул рассматриваемых веществ.

  1. Альдегиды: метаналь - НСОН, бутаналь - СН 3 -СН 2 -СН 2 -СОН, фенилуксусный - С 6 Н 5 -СН 2 -СОН.
  2. Кетоны: ацетон или диметилкетон - СН 3 -СО-СН 3 , метилэтилкетон - СН 3 -СО-С 2 Н 5 и другие.

Очевидно, что название данных соединений образуется двумя путями:

  • по рациональной номенклатуре согласно входящим в состав радикалам и классового суффикса -аль (для альдегидов) и -он (для кетонов);
  • тривиально, исторически сложившееся.

Если привести общую формулу для обоих классов веществ, то станет видно, что они являются изомерами друг другу: C n H 2n O. Для них же самих характерны следующие виды изомерии:


Чтобы различать между собой представителей обоих классов, используют качественные реакции, большинство из которых позволяют выявить именно альдегид. Так как химическая активность данных веществ несколько выше, благодаря наличию катиона водорода.

Строение молекулы

Рассмотрим, как же в пространстве выглядят альдегиды и кетоны. Строение их молекул можно отразить несколькими пунктами.

  1. Атом углерода, непосредственно входящий в функциональную группу, имеет sp 2 - гибридизацию, что позволяет части молекулы иметь плоскую пространственную форму.
  2. При этом полярность связи С=О сильна. Как более электроотрицательный, кислород забирает себе основную часть плотности, концентрируя на себе частично отрицательный заряд.
  3. В альдегидах связь О-Н является также сильно поляризованной, что делает атом водорода подвижным.

В результате получается, что подобное строение молекул позволяет рассматриваемым соединениям и окисляться, и восстанавливаться. Формула альдегида и кетона с перераспределенной электронной плотностью позволяет предсказать продукты реакций, в которых участвуют данные вещества.

История открытия и изучения

Как и многие органические соединения, выделить и изучить альдегиды и кетоны людям удалось лишь в XIX веке, когда виталистические взгляды полностью рухнули и стало понятно, что эти соединения могут образовываться синтетическим, искусственным путем, без участия живых существ.

Однако еще в 1661 году Р. Бойль сумел получить ацетон (диметилкетон), когда подвергал нагреванию ацетат кальция. Но подробно изучить это вещество и назвать его, определить систематическое положение среди других, он не смог. Лишь в 1852 году Уильямсон сумел довести это дело до конца, тогда и началась история подробного развития и накопления знаний о карбонильных соединениях.

Физические свойства

Рассмотрим, каковы физические свойства альдегидов и кетонов. Начнем с первых.

  1. Первый представитель метаналь по агрегатному состоянию - газ, следующие одиннадцать - жидкости, свыше 12 атомов углерода входят в состав твердых альдегидов нормального строения.
  2. Температура кипения: зависит от числа атомов С, чем их больше, тем она выше. При этом чем более разветвлена цепочка, тем ниже опускается значение температуры.
  3. Для жидких альдегидов показатели вязкости, плотности, преломления зависят также от числа атомов. Чем их больше, тем они выше.
  4. Газообразный и жидкие альдегиды растворяются в воде очень хорошо, однако твердые практически не могут этого делать.
  5. Запах представителей очень приятный, часто это ароматы цветов, духов, фруктов. Лишь те альдегиды, в которых количество атомов углерода равно 1-5, являются сильно и неприятно пахнущими жидкостями.

Если обозначать свойства кетонов, то также можно выделить главные.

  1. Агрегатные состояния: низшие представители - жидкости, более массивные - твердые соединения.
  2. Запах резкий, неприятный у всех представителей.
  3. Растворимость в воде хорошая у низших, в органических растворителях отличная у всех.
  4. Летучие вещества, данный показатель превышает таковой у кислот, спиртов.
  5. Температура кипения и плавления зависит от строения молекулы, сильно варьируется от количества атомов углерода в цепи.

Это основные свойства рассматриваемых соединений, которые относятся к группе физических.

Химические свойства

Самое важное, это с чем реагируют альдегиды и кетоны, химические свойства данных соединений. Поэтому их мы рассмотрим обязательно. Сначала разберемся с альдегидами.

  1. Окисление до соответствующих карбоновых кислот. Общий вид уравнения реакции: R-COH + [O] = R-COOH. Ароматические представители еще легче вступают в подобные взаимодействия, также они способны формировать в результате сложные эфиры, имеющие важное промышленное значение. В качестве окислителей используют: кислород, реактив Толленса, гидроксид меди (II) и другие.
  2. Альдегиды проявляют себя как сильные восстановители, при этом превращаясь в предельные одноатомные спирты.
  3. Взаимодействие со спиртами с образованием продуктов ацеталей и полуацеталей.
  4. Особые реакции - поликонденсации. В результате образуются фенолформальдегидные смолы, имеющие значение для химической промышленности.
  5. Несколько специфических реакций со следующими реактивами:
  • водно-спиртовая щелочь;
  • реактив Гриньяра;
  • гидросульфиты и прочие.

Качественной реакцией на данный класс веществ является реакция "серебряного зеркала". В результате нее образуется металлическое восстановленное серебро и соответствующая карбоновая кислота. Для нее необходим аммиачный раствор оксида серебра или реактив Толлинса.

Химические свойства кетонов

Спирты, альдегиды, кетоны являются схожими по проявляемым свойствам соединениями, так как все они кислородсодержащие. Однако уже на стадии окисления становится ясно, что спирты - самые активные и легко поддающиеся воздействию соединения. Кетоны же окислить труднее всего.

  1. Окислительные свойства. В результате образуются вторичные спирты.
  2. Гидрирование также приводит к упомянутым выше продуктам.
  3. Кето-енольная таутомерия - особое специфическое свойство кетонов принимать бета-форму.
  4. Реакции альдольной конденсации с образование бета-кетоспиртов.
  5. Также кетоны способны взаимодействовать с:
  • аммиаком;
  • синильной кислотой;
  • гидросульфитами;
  • гидразином;
  • ортокремниевой кислотой.

Очевидно, что реакции таких взаимодействий очень сложны, особенно те, которые являются специфическими. Это все основные особенности, которые проявляют альдегиды и кетоны. Химические свойства лежат в основе многих синтезов важных соединений. Поэтому знать природу молекул и их характер при взаимодействиях крайне необходимо в промышленных процессах.

Реакции присоединения альдегидов и кетонов

Мы уже рассмотрели данные реакции, однако не давали им такого названия. К присоединению можно отнести все взаимодействия, в результате которых активность проявила карбонильная группа. А точнее, подвижный атом водорода. Именно поэтому в данном вопросе преимущество отдается именно альдегидам, вследствие их лучшей реакционноспособности.

С какими веществами возможны реакции альдегидов и кетонов по нуклеофильному замещению? Это:

  1. Синильная кислота, образуются циангидрины - исходное сырье при синтезе аминокислот.
  2. Аммиак, амины.
  3. Спирты.
  4. Воду.
  5. Гидросульфат натрия.
  6. Реактив Гриньяра.
  7. Тиолы и другие.

Эти реакции имеют важное промышленное значение, поскольку продукты используются в разных областях жизнедеятельности людей.

Способы получения

Существует несколько основных методов, которыми синтезируют альдегиды и кетоны. Получение в лаборатории и промышленности можно выразить в следующих способах.

  1. Самым распространенным методом, в том числе и в лабораториях, является окисление соответствующих спиртов: первичных до альдегидов, вторичных до представителей кетонов. В качестве окислительного агента могут выступать: хроматы, ионы меди, перманганат калия. Общий вид реакции: R-OH + Cu (KMnO 4) = R-COH.
  2. В промышленности часто используют способ, основанный на окислении алкенов - оксосинтез. Основной агент синтез-газ, смесь СО 2 + Н 2 . Результатом становится альдегид с большим на один углерод числом атомов в цепи. R=R-R + СО 2 + Н 2 = R-R-R-COH.
  3. Окисление алкенов озоном - озонолиз. Результат также предполагает альдегид, но кроме этого еще и кетон в смеси. Если продукты мысленно соединить, убрав кислород, станет ясно, какой исходный алкен был взят.
  4. Реакция Кучерова - гидратация алкинов. Обязательный агент - соли ртути. Один из промышленных способов синтеза альдегидов и кетонов. R≡R-R + Hg 2+ + H 2 O = R-R-COH.
  5. Гидролиз дигалогенпроизводных углеводородов.
  6. Восстановление: карбоновых кислот, амидов, нитрилов, хлорангидридов, сложных эфиров. В результате образуется как альдегид, так и кетон.
  7. Пиролиз смесей карбоновых кислот над катализаторами в виде оксидов металлов. Смесь должна быть парообразной. Суть заключается в отщеплении между молекулами диоксида углерода и воды. В результате образуется альдегид или кетон.

Ароматические альдегиды и кетоны получают иными способами, так как данные соединения имеют ароматический радикал (фенил, например).

  1. По Фриделю-Крафтсу: в исходных реагентах ароматический углеводород и дигалогензамещенный кетон. Катализатор - ALCL 3 . В результате образуется ароматический альдегид или кетон. Другое название процесса - ацилирование.
  2. Окисление толуола действием разных агентов.
  3. Восстановлением ароматических карбоновых кислот.

Естественно, что в промышленности стараются использовать те методы, в которых исходное сырье как можно более дешевое, а катализаторы менее токсичные. Для синтеза альдегидов - это окисление алкенов кислородом.

Применение в промышленности и значение

Применение альдегидов и кетонов осуществляется в таких отраслях промышленности, как:

  • фармацевтика;
  • химический синтез;
  • медицина;
  • парфюмерная область;
  • пищевая промышленность;
  • лакокрасочное производство;
  • синтез пластмасс, тканей и прочее.

Можно обозначить еще не одну область, ведь ежегодно только формальдегида синтезируется приблизительно 6 млн т в год! Его 40% раствор именуется формалином и используется для хранения анатомических объектов. Он же идет на изготовление лекарственных препаратов, антисептиков и полимеров.

Уксусный альдегид, или этаналь, также массово производимый продукт. Количество ежегодного потребления в мире составляет около 4 млн т. Он - основа многих химических синтезов, при которых образуются важные продукты. Например:

  • уксусная кислота и ее ангидрид;
  • ацетат целлюлозы;
  • лекарства;
  • бутадиен - основа каучука;
  • ацетатное волокно.

Ароматические альдегиды и кетоны - это составная часть многих ароматизаторов, как пищевых, так и парфюмерных. Большинство из них имеют очень приятные цветочные, цитрусовые, травяные ароматы. Это позволяет изготовлять на их основе:

  • освежители воздуха различного рода;
  • туалетные и парфюмерные воды;
  • различные чистящие и моющие средства.

Некоторые из них являются ароматическими добавками к пище, разрешенными к употреблению. Их природное содержание в эфирных маслах, фруктах и смолах доказывают возможность подобного использования.

Отдельные представители

Такой альдегид, как цитраль, представляет собой жидкость с большой вязкостью и сильным ароматом лимона. В природе содержится как раз в эфирных маслах последнего. Также в составе эвкалипта, сорго, кебаба.

Хорошо известны области его применения:

  • педиатрия - понижение внутричерепного давления;
  • нормализация артериального давления у взрослых;
  • компонент лекарства для органов зрения;
  • составная часть многих душистых веществ;
  • противовоспалительное средство и антисептик;
  • сырье для синтеза ретинола;
  • ароматизатор в пищевых целях.

Расстановка ударений: АЛЬДЕГИ`ДЫ

АЛЬДЕГИДЫ - класс органических соединений с общей формулой

где R - углеводородный радикал (остаток); в организме являются промежуточными продуктами обмена веществ.

Отдельные представители альдегидов обычно получают название от кислоты, образующейся при их окислении (например, уксусная к-та - уксусный А.). В зависимости от типа радикала различают насыщенные, ненасыщенные, ароматические, циклические А. и др. Если радикалом является остаток спирта, карбоновой к-ты и пр., образуются альдегидоспирты, альдегидокислоты и другие соединения со смешанными функциями, обладающие хим. свойствами, присущими А. и соответствующим R-группам. При замещении водорода альдегидной группы на углеводородный радикал получаются кетоны (см.), дающие многие сходные с А. реакции. Один из простейших А. - уксусный, или ацетальдегид СН 3 - СНО, иногда получают дегидрогенизацией этилового спирта над нагретой медью.

Распространен способ получения А. из углеводородов ацетиленового ряда путем присоединения к ним воды в присутствии катализатора, открытый М. Г. Кучеровым:


Эта реакция применяется при синтетическом производстве уксусной к-ты. Ароматические А. обычно получают окислением ароматических, углеводородов, имеющих боковую метильную группу:

или действием на соответствующие углеводороды окиси углерода в присутствии НСl и катализатора.

Особенности и хим. свойства А. Связаны в основном со свойствами и превращениями альдегидной группы. Так, простейший из А. - муравьиный, или формальдегид


альдегидная группировка к-рого связана с водородом, является газом; низшие А. (напр., ацетальдегид) - жидкости с резким запахом; высшие А. - нерастворимые в воде твердые вещества.

Благодаря присутствию карбонильной группы и подвижного атома водорода А. относятся к числу наиболее реакционноспособных органических соединений. Большинство из разносторонних реакций А. характеризуется участием в них карбонильной группы. К ним относятся реакции окисления, присоединения и замещения кислорода на другие атомы и радикалы.

А. легко полимеризуются и конденсируются (см. Алъдоаьная конденсация ); при обработке А. щелочами или кислотами получаются альдоли, напр.:

При отщеплении воды альдоль превращается в кротоновый альдегид


способный к дальнейшему присоединению молекул (путем полимеризации). Полученные в результате конденсации полимеры носят общее название альдольных смол.

При исследовании биол. субстратов (крови, мочи и т. д.) положительный эффект реакций, основанных на окислении альдегидной группы, дает сумма редуцирующих веществ. Поэтому эти реакции, хотя и применяются для количественного определения сахара (глюкозы) по Хагедорну-Йенсену, а также пробы Ниландера, Гайнеса, Бенедикта и пр., но не могут считаться специфическими.

А. играют большую роль в биол. процессах, в частности биогенные амины в присутствии ферментов аминоксидаз превращаются в А. с последующим их окислением в жирные кислоты.

Радикалы А. высших жирных кислот входят в состав молекул плазмалогенов (см.). Растительные организмы в процессах фотосинтеза для ассимиляции углерода используют муравьиный А. Вырабатываемые растениями эфирные масла состоят в основном из циклических ненасыщенных А. (анисовый, коричный, ванилин и др.).

При спиртовом брожении под действием фермента карбоксилазы дрожжей происходит декарбоксилирование пировиноградной к-ты с образованием уксусного А., превращающегося путем восстановления в этиловый спирт.

А. широко используются в синтезе многих органических соединений. В мед. практике применяются как непосредственно А. (см. Формалин, Паральдегид, Цитраль ), так и синтетические производные, получаемые из А., напр, уротропин (см. Гексаметилентетрамин ), хлоралгидрат (см.) и др.

См. также Муравьиный альдегид. Уксусный альдегид .

Альдегиды как профессиональные вредности . А. широко применяются в промышленном производстве синтетических смол и пластмасс, ванилинокрасочной и текстильной промышленности, в пищевой промышленности и парфюмерии. Формальдегид применяется гл. обр. в производстве пластмасс и искусственных смол, в кожевенно-меховой промышленности и т. д.; акролеин - при всех производственных процессах, где жиры подвергаются нагреванию до t ° 170° (литейные цеха - сушка стержней с масляным крепителем, электротехническая промышленность, маслобойные заводы и салотопенное производство и т. д.). Более подробно - см. статьи, посвященные отдельным А.

Все А., особенно низшие, обладают выраженным токсическим действием.

А. раздражают слизистые оболочки глаз и верхних дыхательных путей. По характеру общетоксического действия А. являются наркотиками, однако наркотический эффект их значительно уступает раздражающему. Степень выраженности интоксикации определяется наряду с величиной действующей концентрации также характером радикала и как следствие - изменением физ.-хим. свойств А.: низшие А. (хорошо растворимые и высоколетучие вещества) обладают резким раздражающим действием на верхние отделы органов дыхания и сравнительно менее выраженным наркотическим действием; при увеличении длины углеводородной цепочки радикала растворимость и летучесть А. падают, в результате чего снижается раздражающее, не нарастает наркотическое действие; раздражающее действие непредельных А. сильнее, чем у предельных.

Механизм токсического действия А. связан с высокой реакционной способностью карбонильной группы А., к-рая, вступая в реакции взаимодействия с тканевыми белками, обусловливает первичный раздражающий эффект, рефлекторные реакции ц. н. с., дистрофические изменения внутренних органов и т. д. Кроме того, попадая в организм, А. подвергаются различным биохимическим превращениям; в этом случае токсическое действие на организм оказывают уже не сами А., а продукты их превращений. А. медленно выводятся из организма, способны кумулировать, чем объясняется развитие хрон. отравлений, основные проявления к-рых наблюдаются в первую очередь в виде патологических изменений органов дыхания.

Первая помощь при отравлонии альдегидами . Вывести пострадавшего на свежий воздух. Промыть глаза 2% щелочным раствором. Щелочные и масляные ингаляции. При явлениях асфиксии - вдыхание кислорода. По показаниям средства, стимулирующие сердечную деятельность и дыхание, успокаивающие средства (бромиды, валериана). При болезненном кашле - горчичники, банки, препараты кодеина. При отравлении через рот - промывания желудка, внутрь 3% раствор бикарбоната натрия, сырые яйца, белковая вода, молоко, солевые слабительные. При попадании на кожу - обмывание водой или 5% нашатырным спиртом.

См. также статьи, посвященные отдельным альдегидам.

Профилактика . Герметизация и автоматизация производственных процессов. Вентиляция помещений (см. Вентиляция ). Использование индивидуальных средств защиты, напр. фильтрующего противогаза марки «А» (см. Противогазы ), спецодежды (см. Одежда ) и т. д.

Предельно допустимые концентрации в атмосфере производственных помещений: для акролеина - 0,7 мг/м 3 , для ацетальдегида, масляного и проппонового альдегидов - 5 мг/м 3 , для формальдегида и кротонового А. - 0,5 мг/м 3 .

Определение альдегидов . Все А. суммарно определяются бисульфитным методом по связыванию кислым сернокислым натрием или колориметрически - с фуксиносернистой к-той. Разработан полярографический метод (Петрова-Яковцевская), спектрофотометрический (Векслер).

См. также Отравления, Яды промышленные .

Библиогр.: Бауер К. Г . Анализ органических соединений, пер. с нем., М., 1953; Несмеянов А. Н . и Несмеянов Н. А . Начала органической химии, кн. 1-2, М., 1969-1970.

Профессиональные вредности - Амирханова Г. Ф . и Латыпова З. В . Экспериментальное обоснование предельно допустимой концентрации ацетальдегида в воде водоемов, в кн.: Пром. загрязн. водоемов, под ред. С. Н. Черкинского, в. 9, с. 137, М., 1969, библиогр.; Быховская М. С ., Гинзбург С. Л . и Xализова О. Д . Методы определения вредных веществ в воздухе, с. 481, М., 1966; Ван Вэнь-янь , Материалы к токсикологии альдегидов жирного ряда, в кн.: Материалы по токсикол. веществ, применяемых в производ. пластич. масс и синтетич. каучуков, под ред. Н. В. Лазарева и И. Д. Гадаскиной, с. 42, Л., 1957, библиогр.; Вредные вещества в промышленности, под ред. Н. В. Лазарева, т. 1, с. 375, Л., 1971, библиогр.; Гурвиц С. С . и Сергеева Т. И . Определение малых количеств альдегидов в воздухе производственных помещений методом производной полярографии, Гиг. труда и проф. заболев., №9, с. 44, 1960; Трофимов Л. В . Сравнительное токсическое действие кротонового и масляного альдегидов, там же, №9, с. 34, 1962, библиогр.; Цай Л. М . К вопросу о превращениях ацетальдегида в организме, там же, № 12, с. 33, 1962, библиогр.; Нinе С. Н . а. о. Studies on the toxicity of glycid aldehyde, Arch, environm. Hlth, v. 2, p. 23, 1961, bibliogr.; Jung F . u. Onnen K . Bindung und Wirkungen des Formaldehyds an Erythrocyten, Naunyn-Schmiedeberg"s Arch. exp. Path. Pharmak., Bd 224, S. 179, 1955; Nova H . a. Touraine R. G . Asthme au formol, Arch. Mai. prof., t. 18, p. 293, 1957; Skоg E . A lexicological investigation of lower aliphatic aldehydes, Actapharmacol. (Kbh.), v. 6, p. 299, 1950, bibliogr.

Б. В. Кулибакин; Н. К. Кулагина (проф.).


Источники:

  1. Большая медицинская энциклопедия. Том 1/Главный редактор академик Б. В. Петровский; издательство «Советская энциклопедия»; Москва, 1974.- 576 с.

Альдегиды и кетоны относятся к карбонильным органическим соединениям. Карбонильными соединениями называют органические вещества, в молекулах которых имеется группа >С=О (карбонил или оксогруппа).

Общая формула карбонильных соединений:

Функциональная группа –СН=О называется альдегидной. Кетоны - органические вещества, молекулы которых содержат карбонильную группу, соединенную с двумя углеводородными радикалами. Общие формулы: R 2 C=O, R–CO–R" или

Модели простейших карбонильных соединений

Название

Формальдегид (метаналь)

H 2 C=O

Ацетальдегид (этаналь)

СH 3 -CH=O

Ацетон (пропанон)

(СH 3 ) 2 C=O

Номенклатура альдегидов и кетонов.

Систематические названия альдегидов строят по названию соответствующего углеводорода и добавлением суффикса -аль . Нумерацию цепи начинают с карбонильного атома углерода. Тривиальные названия производят от тривиальных названий тех кислот, в которые альдегиды превращаются при окислении.

Формула

Название

систематическое

тривиальное

H 2 C=O

метаналь

муравьиный альдегид (формальдегид)

CH 3 CH=O

этаналь

уксусный альдегид (ацетальдегид)

(CH 3 ) 2 CHCH=O

2-метил-пропаналь

изомасляный альдегид

CH 3 CH=CHCH=O

бутен-2-аль

кротоновый альдегид

Систематические названия кетонов несложного строения производят от названий радикалов (в порядке увеличения) с добавлением слова кетон . Например: CH 3 –CO–CH 3 - диметилкетон (ацетон); CH 3 CH 2 CH 2 –CO–CH 3 - метилпропилкетон. В более общем случае название кетона строится по названию соответствующего углеводорода и суффикса -он ; нумерацию цепи начинают от конца цепи, ближайшего к карбонильной группе (заместительная номенклатура ИЮПАК). Примеры: CH 3 –CO–CH 3 - пропанон (ацетон); CH 3 CH 2 CH 2 –CO–CH 3 - пентанон- 2; CH 2 =CH–CH 2 –CO–CH 3 - пентен-4-он- 2.

Изомерия альдегидов и кетонов .

Для альдегидов и кетонов характерна структурная изомерия .

Изомерия альдегидов :

изомерия углеродного скелета, начиная с С 4

межклассовая изомерия с кетонами, начиная с С 3

циклическими оксидами (с С 2)

непредельными спиртами и простыми эфирами (с С 3)

Изомерия кетонов : углеродного скелета (c C 5)

положения карбонильной группы (c C 5)

межклассовая изомерия (аналогично альдегидам).

Строение карбонильной группы C=O.

 Свойства альдегидов и кетонов определяются строением карбонильной группы >C=O.

Связь С=О сильно полярна. Ее дипольный момент (2,6-2,8D) значительно выше, чем у связи С–О в спиртах (0,70D). Электроны кратной связи С=О, в особенности более подвижные -электроны, смещены к электроотрицательному атому кислорода, что приводит к появлению на нем частичного отрицательного заряда. Карбонильный углерод приобретает частичный положительный заряд.

 Поэтому углерод подвергается атаке нуклеофильными реагентами, а кислород - электрофильными, в том числе Н + .

В молекулах альдегидов и кетонов отсутствуют атомы водорода, способные к образованию водородных связей. Поэтому их температуры кипения ниже, чем у соответствующих спиртов. Метаналь (формальдегид) - газ, альдегиды С 2 –C 5 и кетоны С 3 –С 4 - жидкости, высшие - твердые вещества. Низшие гомологи растворимы в воде, благодаря образованию водородных связей между атомами водорода молекул воды и карбонильными атомами кислорода. С увеличением углеводородного радикала растворимость в воде падает.

Реакционные центры альдегидов и кетонов

sp 2 -Гибридизованный атом углерода карбонильной группы образует три σ-связи, лежащие в одной плоскости, и π-связь с атомом кислорода за счет негибридизованной p-орбитали. Вследствие различия в электроотрицательности атомов углерода и кислорода π-связь между ними сильно поляризована (рис. 5.1). В результате на атоме углерода карбонильной группы возникает частичный положительный заряд δ+, а на атоме кислорода - частичный отрицательный заряд δ-. Поскольку атом углерода электронодефицитен, он представляет собой центр для нуклеофильной атаки.

Распределение электронной плотности в молекулах альдегидов и кетонов с учетом передачи электронного влияния электроно-

Рис. 5.1. Электронное строение карбонильной группы

дефицитного атома углерода карбонильной группы по σ-связям представлено на схеме 5.1.

Схема 5.1. Реакционные центры в молекуле альдегидов и кетонов

В молекулах альдегидов и кетонов присутствует несколько реакционных центров:

Электрофильный центр - атом углерода карбонильной группы - предопределяет возможность нуклеофильной атаки;

Основный центр - атом кислорода - обусловливает возможность атаки протоном;

СН-кислотный центр, атом водорода которого обладает слабой протонной подвижностью и может, в частности, подвергаться атаке сильным основанием.

В целом альдегиды и кетоны обладают высокой реакционной способностью.

Первая группа свойств — реакции присоединения. В карбонильной группе между углеродом и кислородом присутствует двойная связь, которая, как вы помните, состоит из сигма-связи и пи-связи. В реакциях присоединения пи-связь рвется и образуются две сигма связи — одна с углеродом, вторая — с кислородом. На углероде сосредоточен частичный положительный заряд, на кислороде — частичный отрицательный. Поэтому к углероду присоединяется отрицательно заряженная частица реагента, анион, а к кислород — положительно заряженная часть молекулы.

Первое свойство — гидрирование, присоединение водорода.

Реакция проходит при нагревании. Применяется уже известный вам катализатор гидрирования — никель. Из альдегидов получаются первичные спирты, из кетонов вторичные.

У вторичных спиртов гидроксогруппа связана со вторичным атомом углерода.

Второе свойство — гидратация, присоединение воды. Эта реакция возможна только для формальдегида и ацетальдегида. Кетоны совсем не реагируют с водой.

Все реакции присоединения идут таким образом, что плюс идет к минусу, а минус к плюсу.

Как вы помните из видео про спирты , наличие двух гидроксогрупп у одного атома почти невозможная ситуация, такие вещества крайне неустойчивы. Так вот конкретно два этих случая — гидрат формальдегида и уксусного альдегида — возможны, хотя и существуют только в растворе.

Сами реакции знать не обязательно. Скорее всего, вопрос на экзамене может звучать как констатация факта, допустим, с водой реагируют и перечислены вещества. Среди их перечня которых могут быть метаналь или этаналь.

Третье свойство — присоединение синильной кислоты.

Снова плюс идет к минусу, а минус к плюсу. Получаются вещества, называемые гидроксинитрилами. Опять же, сама реакция встречается нечасто, но знать об этом свойстве нужно.

Четвертое свойство — присоединение спиртов.

Здесь снова не нужно знать наизусть уравнение реакции, просто надо понимать, что такое взаимодействие возможно.

Как обычно в реакциях присоединения к карбонильной группе — плюс к минусу, а минус к плюсу.

Пятое свойство — реакция с гидросульфитом натрия.

И снова, реакция довольно сложная, выучить ее вряд ли получится, но это одна из качественных реакций на альдегиды, потому что полученная натриевая соль выпадает в осадок. То есть по факту вы должны знать, что альдегиды реагируют с гидросульфитом натрия, этого будет достаточно.

На этом закончим с первой группой реакций. Вторая группа — реакции полимеризации и поликонденсации.

2. Полимеризация и поликонденсация альдегидов

С полимеризацией вы знакомы: полиэтилен, бутадиеновый и изопреновый каучуки, поливинилхлорид — это продукты объединения множества молекул (мономеров) в одну большую, в единую полимерную цепь. То есть получается один продукт. При поликонденсации происходит то же самое, но помимо полимера получаются еще низкомолекулярные продукты, например, вода. То есть получается два продукта.

Итак, шестое свойство — полимеризация. Кетоны в эти реакции не вступают, промышленное значение имеет только полимеризация формальдегида.

Пи-связь рвется и образуются две сигма связи с соседними мономерами. Получается полиформальдегид, называемый также параформ. Вероятнее всего, вопрос на экзамене может звучать так: в реакции полимеризации вступают вещества. И приведен список веществ, среди которых может быть в формальдегид.

Седьмое свойство — поликонденсация. Еще раз: при поликонденсации помимо полимера получается еще низкомолекулярное соединение, например, вода. Формальдегид вступает в такую реакцию с фенолом. Для наглядности сначала запишем уравнение с двумя молекулами фенола.

В результате получается такой димер и отщепляется молекула воды. Теперь запишем уравнение реакции в общем виде.

Продуктом поликонденсации является феноло-формальдегидная смола. Она находит широкое применение — от клеев и лаков до пластмасс и компонента древесно-стружечных плит.

Теперь третья группа свойств — реакции окисления.

3. Окисление альдегидов и кетонов

Восьмой реакцией в общем списке является качественная реакция на альдегидную группу — окисление аммиачным раствором оксида серебра. Реакция «серебряного зеркала». Скажу сразу, кетоны не вступают в эту реакцию, только альдегиды.

Альдегидная группа окисляется до карбоксильной, кислотной группы, но в присутствии аммиака, который является основание, сразу же происходит реакция нейтрализации и получается соль — ацетат аммония. Серебро выпадает в осадок, покрывая пробирку изнутри и создавая зеркальную поверхность. Эта реакция встречается на ЕГЭ постоянно.

Кстати, эта же реакция является качественной на другие вещества, имеющие альдегидную группу, например, на муравьиную кислоту и ее соли, а также на глюкозу.

Девятая реакция тоже качественная на альдегидную группу — окисление свежеосажденным гидроксидом меди два. Здесь тоже замечу, что кетоны не вступают в эту реакцию.

Визуально будет наблюдаться сначала образование желтого осадка, который потом становится красным. В некоторых учебниках встречается информация, что сначала образуется гидроксид меди один, имеющий желтый цвет, который затем распадается на красный оксид меди один и воду. Так вот это неверно — по последним данным в процессе выпадения осадка меняется размер частиц оксида меди один, которые в конечном счете достигают размеров, окрашенных именно в красный цвет. Альдегид окисляется до соответствующей карбоновой кислоты. Реакция встречается на егэ очень часто.

Десятая реакция — окисление альдегидов подкисленным раствором перманганата калия при нагревании.

Происходит обесцвечивание раствора. Альдегидная группа окисляется до карбоксильной, то есть альдегид окисляется до соответствующей кислоты. Для кетонов эта реакция не имеет практического смысла, поскольку происходит разрушение молекулы и в результате получается смесь продуктов.

Важно отметить, что муравьиный альдегид, формальдегид, окисляется до углекислого газа, потому как соответствующая ему муравьиная кислота сама не устойчива к действию сильных окислителей.

В итоге углерод переходит из степени окисления 0 в степень окисления +4. Напомню, что и метанол, как правило, в таких условиях окисляется по максимуму до CO 2 , проскакивая стадию и альдегида, и кислоты. Эту особенность надо запомнить.

Одиннадцатая реакция — горение, полное окисление. И альдегиды, и кетоны сгорают до углекислого газа и воды.

Запишем уравнение реакции в общем виде.

По закону сохранения массы атомов слева должно быть столько же, сколько атомов справа. Потому что ведь в химических реакциях атомы никуда не деваются, а просто изменяется порядок связей между ними. Так вот молекул углекислого газа будет столько же, сколько и атомов углерода в молекуле карбонильного соединения, поскольку в состав молекулы входит один атом углерода. То есть n молекул CO 2 . Молекул воды будет в два раза меньше, чем атомов водорода, то есть 2n/2, а значит просто n.

Атомов кислорода слева и справа одинаковое количество. Справа их 2n из углекислого газа, потому что в каждой молекуле два атома кислорода, плюс n воды, итого 3n. Слева атомов кислорода столько же — 3n, но один из атомов находится в молекуле альдегида, значит его надо вычесть из общего количества, чтобы получить количество атомов, приходящихся на молекулярный кислород. Выходит 3n-1 атомов содержит молекулярный кислород, а значит молекул в 2 раза меньше, потому как в состав одной молекулы входят 2 атома. То есть (3n-1)/2 молекул кислорода.

Таким образом, мы составили уравнение сгорания карбонильных соединений в общем виде.

И, наконец, двенадцатое свойство, относящееся к реакциям замещения — галогенирование по альфа-атому углерода. Еще раз обратимся к строению молекулы альдегида. Кислород оттягивает на себя электронную плотность, создавая частичный положительный заряд а углероде. Метильная группа пытается компенсировать этот положительный заряд, смещая к нему электроны от водорода по цепи сигма-связей. Связь углерод-водород становится более полярной и водород легче отрывается при атаке реагентом. Такой эффект наблюдается только для альфа-атома углерода, то есть атома следующего за альдегидной группой, вне зависимости от длины углеводородного радикала.

Таким образом, возможно получение, например, 2-хлорацетальдегида. Возможно дальнейшее замещение атомов водорода до трихлорэтаналя.

Нахождение в природе

Альдегидная группа содержится во многих природных веществах, таких, как углеводы (альдозы), некоторые витамины (ретиналь, пиридоксаль). Их следы содержатся в эфирных маслах и часто способствуют их приятному запаху, например, коричный альдегид (в кассиевом масле его может быть до 75 %, а в цейлонском коричном масле даже до 90 %) и ванилин.

Алифатический альдегид СН3(СН2)7С(Н)=О (тривиальное название - пеларгоновый альдегид) содержится в эфирных маслах цитрусовых растений, обладает запахом апельсина, его используют как пищевой ароматизаторотщепление.

Цитраль содержится в лемонграссовом и кориандровом маслах (до 80 %), цитронеллаль - в цитронелловом (приблизительно 30 %) и эвкалиптовом, бензальдегид - в масле горького миндаля. Куминовый альдегид содержится в масле тмина, гелиотропин - в масле гелитропа и сирени, анисовый альдегид и жасминальдегид в небольших количествах содержатся во многих эфирных маслах.отщеплениеотщепление.

Процесс получения ацетальдегида, основанный на гидратации ацетилена, в последнее время потерял былое значение. Последние фабрики в Западной Европе, синтезирующие ацетальдегид по данной схеме, были закрыты в 1980 году. Причиной этому послужила бо́льшая доступность этилена в качестве сырья, а также токсичность катализатора - сульфата ртути.

Ежегодное мировое производство формальдегида (по данным на 1996 год) составило 8,7·106 т, ацетальдегида (на 2003 год) - 1,3·106 т.

Основным методом получения бензальдегида является гидролиз бензальхлорида в кислой или щелочной средах. В качестве гидролизующих агентов могут применяться гидроксид кальция, карбонат кальция, гидрокарбонат натрия, карбонат натрия, а также различные кислоты с добавлением солей металлов. Исходное сырьё, в свою очередь, получают при хлорировании толуола в боковую цепь. Менее распространённый процесс основан на частичном окислении толуола.

Физические свойства альдегидов

Формальдегид представляет собой газообразное при комнатной температуре вещество. Альдегиды до С12 - жидкости, а альдегиды нормального строения с более длинным неразветвлённым углеродным скелетом, являются твёрдыми веществами.

Температуры кипения альдегидов с неразветвлённым строением углеродной цепи выше, чем у их изомеров. Например, валериановый альдегид кипит при 100,4 °C, а изовалериановый - при 92,5 °C. Они кипят при более низких температурах, чем спирты с тем же числом углеродных атомов, например, пропионовый альдегид кипит при 48,8 °C, а пропанол-1 при 97,8 °C. Это показывает, что альдегиды, в отличие от спиртов, не являются сильно ассоциированными жидкостямиотщепление. Данное свойство используется в синтезе альдегидов путём восстановления спиртов: поскольку температура кипения альдегидов в целом ниже, они могут быть легко отделены и очищены от спирта перегонкой. В то же время их температуры кипения намного выше, чем у углеводородов с той же молекулярной массой, что связано сих высокой полярностьюотщепление.

Вязкость, плотность и показатель преломления при 20 °C увеличиваются с увеличением молярной массы альдегидов. Низшие альдегиды являются подвижными жидкостями, а альдегиды от гептаналя до ундеканаля имеют маслообразную консистенцию.

Формальдегид и ацетальдегид практически неограниченно смешиваются с водой, однако, с ростом длины углеродного скелета, растворимость альдегидов в воде сильно уменьшается, например, растворимость гексаналя при 20 °С составляет лишь 0,6 % по массе. Алифатические альдегиды растворимы в спиртах, простых эфирах и других распространённых органических растворителях.

Низшие альдегиды имеют резкий запах, а высшие гомологи от С8 до С13 являются компонентами многих парфюмерных изделий.

Атом углерода в карбонильной группе находится в состоянии sp2-гибридизации. Углы R-C-H, R-C-O и H-C-O составляют приблизительно 120° (где R - алкил).

Двойная связь карбонильной группы сходна по физической природе с двойной связью между углеродными атомами, однако в то же время энергия связи С=О (749,4 кДж/моль) больше, чем энергия двух простых связей (2×358 кДж/моль) C-O. С другой стороны, кислород является более электроотрицательным элементом, чем углерод, и потому электронная плотность вблизи атома кислорода больше, чем вблизи атома углерода. Дипольный момент карбонильной группы составляет ~9·10−30 Кл·мотщепление. Длина связи С=О составляет 0,122 нм.

Поляризация двойной связи «углерод-кислород» по принципу мезомерного сопряжения позволяет записать следующие резонансные структуры:

Подобное разделение зарядов подтверждается физическими методами исследования и во многом определяет реакционную способность альдегидов как выраженных электрофилов и позволяет им вступать в многочисленные реакции нуклеофильного присоединения.

Подобным образом протекает и реакция присоединения спиртов по карбонильной группе, имеющая важное значение в органическом синтезе для защиты карбонильной группы. Первичный продукт присоединения называется полуацеталем, далее под действием кислоты он превращается в ацеталь. При стоянии альдегиды также образуют циклические или полимерные ацетали (например, триоксан или параформ для формальдегида и паральдегид для ацетальдегида). При нагревании этих соединений со следовыми количествами кислот происходит деполимеризация и регенерация исходных альдегидов.

Аналогичные превращения происходят также с участием серосодержащих аналогов спиртов - тиолов; они приводят, соответственно, к тиоацеталям, также играющим важную роль в тонком органическом синтезе.

Альдегиды могут присоединять циановодород HCN с образованием циангидринов, применяемых в органическом синтезе для получения α,β-ненасыщенных соединений, α-гидроксикислот, α-аминокислот. Данная реакция также является обратимой и катализируется основаниями. В лабораторных условиях циановодород (т. кип. 26 °C) обычно получают действием эквивалентного количества минеральной кислоты на цианид натрия или калия.

Относительно небольшие пространственные затруднения при присоединении нуклеофилов к альдегидам позволяют превращать их в бисульфитные производные под действием большого избытка гидросульфита натрия NaHSO3. Данные соединения представляют собой кристаллические вещества и часто используются для выделения, очистки или хранения соответствующих альдегидов, поскольку последние могут быть легко из них регенерированы под действием кислоты или основания.

Реакция альдегидов с магний- и литийорганическими соединениями приводит к образованию вторичных спиртов (в случае формальдегида - первичных). Процесс может осложняться побочными реакциями енолизации и восстановления карбонильного соединения, которые приводят к снижению выхода. При использовании литийорганических соединений эти помехи удаётся устранить.

При реакции альдегидов с первичными и вторичными аминами происходит образование иминов и енаминов соответственно. В основе обеих реакций лежит присоединение нуклеофильных реагентов по карбонильной группе с последующим отщеплением воды от полученного тетраэдрического интермедиата. Реакция образования иминов требует кислотного катализа и наиболее эффективно протекает в области pH от 3 до 5. Для получения енаминов с удовлетворительным выходом необходимо применять азеотропную отгонку воды, что позволяет сместить равновесие в сторону образования продукта. Обычно в качестве вторичных аминов используют циклические амины (пирролидин, пиперидин или морфолин).

Аналогичным образом альдегиды реагируют с гидроксиламином, гидразином, 2,4-динитрофенилгидразином, семикарбазидом и другими подобными соединениями. Большинство получаемых при этом соединений являются кристаллическими и могут быть использованы для идентификации альдегидов по температуре плавления и другим характеристикам. Также эти соединения находят применение в органическом синтезе, например, гидразоны могут быть восстановлены по реакции Кижнера - Вольфа.

Присоединение к α,β-ненасыщенным альдегидам может протекать с образованием 1,2- и 1,4-продуктов

Присоединение нуклеофильных реагентов к α,β-ненасыщенным альдегидам может протекать как по карбонильной группе, так и по «четвёртому» положению сопряжённой системы. Причина этого заключается в том, что двойная углерод-углеродная связь поляризуется под действием полярной карбонильной группы (мезомерный эффект), и дальний от карбонильной группы атом углерода двойной связи приобретает частичный положительный заряд. Реакция нуклеофила с данным атомом углерода называется сопряжённым присоединением, или 1,4-присоединением. Присоединение к карбонильной группе по аналогии называют 1,2-присоединением. Формальным результатом 1,4-присоединения является присоединение нуклеофила по углерод-углеродной двойной связи. Во многих случаях 1,2- и 1,4-присоединение являются конкурирующими реакциями, однако иногда удаётся проводить селективные реакции с получением продуктов 1,2- либо 1,4-присоединения.

Присоединение первичных и вторичных аминов к α,β-ненасыщенным альдегидам протекает в мягких условиях и приводит к образованию 1,4-продукта. Напротив, в случае циановодорода наблюдается конкурентное образование обоих продуктов с преобладанием продукта 1,2-присоединения. Чтобы в данной реакции исключить возможность 1,2-присоединения, используют специальный реагент - диэтилалюминийцианид (C2H5)2AlCN.

Литийорганические соединения присоединяются исключительно по карбонильной группе, давая аллиловые спирты. Сопряжённое присоединение проводят под действием медьорганических реагентов - диалкилкупратов, которые позволяют ввести в карбонильное соединение не только первичную, но также вторичную или третичную алкильную, алкенильную или арильную группу. Магнийорганические реагенты (реактивы Гриньяра), полученные из магния сверхвысокой чистоты, также присоединяются с образованием 1,2-продуктов, в то время как обыкновенные реактивы Гриньяра, предположительно из-за примесей других металлов (например, меди и железа) вступают и в 1,2-, и в 1,4-присоединение, что регулируется пространственными факторами. В настоящее время магнийорганические реагенты утратили своё значение в данной области.

Благодаря способности образовывать енолят-ионы альдегиды вступают в ряд химических реакций, где эти частицы выступают как нуклеофилы. В частности, для них характерны реакции конденсации. В слабоосновной среде (в присутствии ацетата, карбоната или сульфита калия) подвергаются альдольной конденсации, в ходе которой часть молекул альдегида выступает как карбонильная компонента (реагирует карбонильной группой), а часть молекул альдегида под действием основания превращается в енолят-ионы и выступает как метиленовая компонента (вступает в реакцию α-метиленовым звеном). Образующийся альдоль при нагревании отщепляет воду с образованием α,β-непредельного альдегида (переход от предельного альдегида к непредельному через альдоль называется кротоновой конденсацией или альдольно-кротоновой конденсацией).

При реакции между двумя разными альдегидами образуется смесь четырёх различных альдолей. Исключение составляют случаи, когда разделение реагентов на карбонильную и метиленовую компоненту очевидно (например, один из альдегидов не содержит α-метиленового звена и может выполнять роль только карбонильной компоненты). Разработаны также методы повышения селективности подобных реакций. Перекрёстная конденсация ароматических альдегидов с кетонами, получила название реакции Кляйзена - Шмидта. Известны также схожие реакции альдегидов: реакция Кнёвенагеля, реакция Тищенко, реакция Перкина, бензоиновая конденсация и другиеотщепление.

Ароматические альдегиды также окисляются до карбоновых кислот или сложных эфиров фенолов (реакция Байера - Виллигера) под действием надкислот, причём соотношение продуктов зависит как от заместителей в ароматическом ядре, так и от кислотности среды.

Альдегиды можно восстанавливать до первичных спиртов. Наиболее распространённые методы восстановления включают реакции с комплексными гидридами: боргидридом натрия NaBH4, боргидридом лития LiBH4 и алюмогидридом лития LiAlH4. Боргидрид натрия является более избирательным реагентом и позволяет восстанавливать карбонильную группу альдегидов и кетонов, не затрагивая сложноэфирные, нитрильные, амидные, лактонные и оксирановые группы. Он также не восстанавливает изолированную двойную углерод-углеродную связь. Алюмогидрид лития менее селективен и восстанавливает перечисленные выше функциональные группы, поэтому восстановление альдегидов с его применением возможно только в отсутствие этих групп.

Историческую роль играет реакция Меервейна - Пондорфа - Верлея, в которой в качестве восстановителя используется изопропилат алюминия. В настоящее время этот метод вытеснен более эффективной реакцией восстановления альдегидов и кетонов изопропиловым спиртом в присутствии окиси алюминия.

Алифатические альдегиды обычно не гидрируют на палладиевых катализаторах, но для этих целей можно использовать рутений на угле, никель Ренея или платину.

В аналитической практике используется окисление альдегидов и кетонов йодом в щелочной среде. Йод добавляют в избытке, а затем избыток его оттитровывают тиосульфатом натрия.

Спектральные методы анализа альдегидовов.

ИК-спектроскопические методы анализа альдегидовотщепление

Альдегиды легко идентифицировать по ИК-спектру - он содержит специфические полосы поглощения, относящиеся к валентным колебаниям связи C-H в альдегидной группе: два острых пика, расположенные далеко за пределами области поглощения, характерной для связей C-H обычного типа. Кроме того, в ИК-спектрах альдегидов обычно присутствуют полосы поглощения, обусловленные валентными колебаниями связей С=O и C-H: νС=O=1725-1685 см−1, νС-H=2850; 2750 см−1.

Масс-спектрометрические методы анализа альдегидовотщепление

Масс-спектры альдегидов имеют довольно выраженный молекулярный ион, хотя его содержание может быть довольно низким. Потеря алкильных радикалов приводит к образованию ацил-катионов. Для них особенно характерны α- и β-расщепление и перегруппировка Мак-Лафферти. Для альдегидов с подвижным γ-атомом H и не содержащих заместителя у α-углерода характерен пик m/z=44, а для содержащих заместитель появляется интенсивный пик замещённого иона с m/z=44+12nотщепление.

ЯМР-спектроскопические методы анализа альдегидовотщепление

В 1Н ЯМР-спектре альдегида наиболее характеристичным является сигнал формильного протона, обычно расположенный в наиболее слабом поле в области δ 9,4-10,1 м д. (9,4-9,7 -алифатические, 9,6-10,1 -ароматические)отщепление. Сигнал альдегидной группы в 13C ЯМР-спектре расположен в области 182-215 м д.

УФ-спектроскопические методы анализа альдегидовотщепление

Два максимума поглощения от р до р* (<200 нм) и от n до р* (> 200 нм).

Электронно-спектроскопические методы анализа альдегидовотщепление

Электронные спектры содержат полосы с λмакс 290 нм для RCHO (R=CH3, C2H5, C3H7), 345 нм для акролеина и 327 для кротонового альдегидаотщепление.

Биологическое действие

Токсичны. Способны накапливаться в организме. Кроме общетоксического, обладают раздражающим и нейротоксическим действием. Эффект зависит от молекулярной массы: чем она больше, тем слабее раздражающее, но сильнее наркотическое действие, причём ненасыщенные альдегиды токсичнее насыщенных. Некоторые обладают канцерогенными свойствами.

Альдегиды раздражают слизистые оболочки глаз и верхних дыхательных путей, вредно влияют на нервную систему. С увеличением числа атомов углерода в молекуле раздражающее действие ослабевает. Ненасыщенные альдегиды обладают более сильным раздражающим действием, чем насыщенные.

Ацетальдегид СН3СНО вызывает возбуждение, сменяющееся наркозом. Он является промежуточным продуктом метаболизма этилового спирта в организме. Действие тримера этого альдегида - паральдегида (С2Н40)3 - сильнее и продолжительнее, в то время как тетрамер - метальдегид (С2Н40)4 - является более токсичным. Удлинение алкильного радикала в молекуле альдегида приводит к усилению физиологической активности, но вместе с этим возрастает и токсичность.

Введение галогена в молекулу альдегида повышает его наркотическое (снотворное) действие. Так, наркотические свойст­ва хлораля более выражены, чем у ацетальдегида. Альдегидная группа усиливает токсичность вещества, но она может быть значительно снижена путем образования гидратной формы альдегида. Гидратные формы мало токсичны, в такой форме хлораль применяется в медицине под названием хлоралгидрата, проявляющего снотнорное действие. Введение гидроксильных групп в молекулу альдегида или конденсация их с образованием альдолей существенно снижает реакционную способность, а также физиологическую активность соединений. Так, сахара представляют собой фармакологически инертные вещества. Большинство ароматических альдегидов имеет низкую токсичность, так как они легко окисляются до соответствующих кислот, которые обычно довольно инертныотщепление

Из всех альдегидов больше всего производится формальдегида (около 6 млн тонн/год). Он, в основном, используется в производстве смол - бакеллита, галалита (в сочетании с мочевиной, меламином и фенолом), для дубления кож, протравливания зерна. Также из него синтезируют лекарственные средства (уротропин) используют как консервант биологических препаратов (благодаря способности свертывать белок). Он является предшественником метилендифенилдиизоцианата, использующегося в производстве полиуретанов и гексогена (довольно сильной взрывчатки).

Второй по масштабам производства альдегид - масляный альдегид (получают около 2,5 млн тонн/год методом гидроформилирования). Некоторые альдегиды синтезируют только в небольших масштабах (менее 1000 тонн / год) и используют в качестве ингредиентов в парфюмерии и ароматов (в основном альдегиды с числом атомов карбона от 8 до 12)отщепление. Например, это коричный альдегид и его производные - цитраль и лилиаль.

Ацетальдегид используется для синтеза уксусной кислоты, этилового спирта, бутадиена для получения производных пиридина, пентаэритрита и кротонового альдегида, а также при синтезе поливинилацетата и пластмасс.

Альдегиды применяют для синтеза спиртов (бутиловых, 2-этилгексанола, пентаэритрита), карбоновых кислот, полимеров, антиоксидантов, пиридиновых основанийотщепление.

Список литературы:

1. http://intranet.tdmu.edu.ua/data/kafedra/internal/distance/lectures_stud/русский/1%20курс/Медицинская%20химия/06.%20Карбонильные%20соединения.%20Альдегиды%20и%20кетоны%20Карбоновые%20кислоты.Липиды..htm

  • акторы патогенности микроорганизмов. Понятие контаминации, колонизации, инфекции. Инвазивные и токсические свойства микроорганизмов.
  • Актуализация смысла действия сложения, переместительного свойства умножения, правила взаимосвязи компонентов действия умножения.
  • Аналогия-подобие предметов в каких-либо свойствах при чем таких предметов, которые в целом различны.