Музыкальная катушка тесла схема. Генератор Тесла или молнии под музыку.  Шоу музыкальных катушек Тесла

Музыкальная катушка тесла схема. Генератор Тесла или молнии под музыку. Шоу музыкальных катушек Тесла


На сайте Кickstarter трое американских студентов представили проект OneTesla. Знаменитую резонансную катушку Тесла, используемую учёными для получения высоких напряжений на высоких частотах, юные физики уменьшили в размерах и превратили в необычный музыкальный инструмент с MIDI интерфейсом, воспроизводящий музыку при помощи красивых разрядов-молний. Музыкальную катушку изобретатели предлагают в виде конструктора «сделай сам» по цене около $330.

Оригинал катушки Тесла может иметь размеры небольшой комнаты и выдавать разряды-молнии длиной до нескольких метров, при этом рабочее напряжение катушки может составлять до 250 000 вольт, что делает устройство крайне опасным для жизни. Но студенты предлагают более безобидный прототип резонансной катушки: OneTesla имеет высоту всего 25 см и выдаёт при этом «молнии» длиной до 60-ти см.


Музыкальной катушку OneTesla делает альянс с MIDI интерфейсом, но в целом устройство, как и более ста лет назад, работает от уникального трансформатора Тесла. Воспроизвести звук с OneTesla в домашних условиях можно, подключив катушку к ПК или синтезатору через порт USB MIDI. «Музыкальная катушка» одновременно может проигрывать всего 2 ноты, но этого достаточно, чтобы вполне разборчиво услышать любимую мелодию в необычном исполнении.


Авторы проекта предлагают комплект с набором необходимых деталей, чтобы собрать OneTesla самостоятельно. И хотя устройство является не самым простым, разработчики уверяют, что следуя подробным инструкциям и умея обращаться с паяльником, катушку можно собрать в течение одного дня. В комплект «сделай сам» входит непосредственно трансформатор Тесла, две платы, две обмотки, тороид, конденсатор, а также ряд более мелких элементов. При этом стартап является абсолютно открытым, и молодые физики предоставляют бесплатный доступ к подробным схемам OneTesla.



Первичная обмотка в катушке OneTesla имеет 6 витков провода диаметром 1,6мм, вторичная обмотка рассчитана на 1800 витков провода диаметром 0,127 мм. Плата-драйвер, связанная с первичной обмоткой подключается к электрической сети и обеспечивает питание устройства. А плата-прерыватель, сконструированная на базе микроконтроллера ATmega328P-PU, предназначена для генерирования сигналов включения и выключения, создающих разряды на нужной частоте. К ней подключается MIDI-устройство, с которого и считывается входной сигнал. В целях защиты устройства от высоких напряжений, сигнал от одной платы к другой передаётся посредством оптоволокна, а также на плате-прерывателе установлена специальная механическая ручка, регулирующая выходную мощность устройства.

На сайте проекта авторы предупреждают и о мерах безопасности при использовании музыкальной катушки. Так, например, ни в коем случае нельзя вступать в контакт с искрами. Кроме того важно учитывать, что ионизированный вокруг устройства воздух выделяет озон, который в больших количествах является раздражающим газом. Поэтому использовать катушку можно только в хорошо проветриваемом помещении. Но даже несмотря на такие строгие правила эксплуатации, за полгода существования катушки ОneTesla появились десятки тысяч желающих приобрести этот необычный прототип катушки от легендарного изобретателя.

Описание полу-мостовой демонстрационной катушки Тесла с аудио модуляцией.

Для того, чтобы проигрывать музыку высоковольтными разрядами нужны транзисторная катушка Тесла, пульт управления он же прерыватель, способный передавать ноты в схему управления генератора и источник сигнала – ноут-бук, ПК или музыкальная клавиатура. Это всё подключается вместе и в итоге получается весьма эффектное представление - поющая катушка. Хотя на протяжении проходивших мини концертов меня не оставляло ощущение о том, что это всё есть масштабное баловство. Похоже, что тут уже ничего не поделать и сложилась такая молодежная поп-культура. Сегодня в мире организуются целые масштабные представления с катушками Тесла, концерты и Тесла шоу которые собирают много любопытствующих. Смотреть на музыкальные разряды гораздо лучше, чем на просто разряды. О чем идет речь можно понять из видео.

Чтоб получить подобные результаты нужно собрать следующую схему.

Рисунок 1 – Структурная схема подключения аудио сигнала к DRSSTC

Есть и другие варианты, но такая схема наиболее проста. Рассмотрим кратко каждый блок.

Катушка Тесла DRSSTC.

В качестве генератора выбрана DRSSTC 1, которая использовалась для однопроводной линии. Она была почти полностью переделана и стала DRSSTC 1.1. Первоначальный вид устройства можно посмотреть . В генераторе использован полу-мостовой коммутатора тока с транзисторами IRGP50B60PB1. Полу-мост и GDT остались без изменений.

Силовая часть управляется универсальным драйвером Стивена Варда UD1.3b. Схема в оригинале . Описание на сайте автора.
Собранная схема представлена на рисунке 2.



Рисунок 2 - Плата управления DRSSTC

Плата прячется в металлический корпус, чтоб не ловить наводки от ВЧ поля катушки. Рассмотрение принципа работы схемы помещено в отдельную статью.

Блок питания.

БП - это схема плавного запуска и выпрямитель с фильтровым конденсатором. Так же в нем есть предохранитель на 5А, помехоподавляющий конденсатор и на одну плату со всем этим прикреплен понижающий трансформатор 220/18 для питания низковольтной электроники. Схема плавного заряда электролитов состоит из реле и зарядных резисторов. Прочитать о ней можно .



Рисунок 3 - Блок питания

Через 5-6 сек. после подачи напряжения питания срабатывает реле и генератор можно запускать. При этом не происходит броска тока, так как конденсатор большой емкости зарядился через резисторы.


Рисунок 4 - Внутреннее содержание корпуса

Кроме драйвера, БП и контурных конденсаторов в корпусе находятся трансформаторы тока для организации обратной связи и защиты от превышения контурного тока (OCD). Как они работают, тоже уже написано .

Резонансный трансформатор.

Первичный контур сделан из переключаемой емкости и конической первичной обмотки, выполненной проводом Ø3мм, 12 витков. Резонанс на 10-ом витке.


Рисунок 5 - Первичная и вторичная обмотки резонансного трансформатора

Батарея MMC собрана из конденсаторов CBB81. Общая емкость составляет 147нФ 4кВ. Для работы с вторичной обмоткой, специально сделанной для этого проекта, емкость составляет 47нФ. В связи с переключаемой емкостью генератор универсален и может работать с различными вторичными обмотками.



Рисунок 6 - Конденсаторы первичного колебательного контура

Вторичная обмотка выполнена проводом Ø0,18мм на каркасе Ø11 см. Всего 1200 витков. Длина намотки 25см.
Емкость для вторичной обмотки сделана из алюминиевого гофрированного воздуховода. Согласно расчету тороид должен быть с внешним диаметром 18см и диаметром самой трубы 8 см. Такого тороида не нашлось и гофры в магазине не оказалось. Ближайшим по размеру являлся тороид от одной старой SSTC, он без дела лежал на чердаке и в результате оказался на вершине вторичной обмотки. Его внешний диаметр 21-22 см. Это больше расчетного значения, но катушка с ним запустилась и создавала разряды до 30см.
Спустя некоторое время всё же решено было достичь расчетных значений. Был построен тороид требуемого диаметра из алюминиевых колец. Кольца держаться с помощью пластиковых кругов. Чтоб кольца не развалились, они дополнительно склеены термо-клеем.



Рисунок 7 - Тороид из колец

Катушка с таким тороидом почему-то работать отказывалась пока все кольца не были соединены тонким куском провода в одном месте.


Рисунок 8 - Соединение колец проволкой

Для сравнения два видео с разными тороидами. Все прочие параметры генератора не изменялись. Длительность импульса 115-120мкс, период 5мс.

При уменьшении внешнего диаметра тороида разряды возросли до 35-40 см. Это еще раз доказывает, что в трансформаторах Тесла важен точный частотный расчет связанных контуров и соблюдение четверть-волнового резонанса на краях высоковольтной катушки. При этом нужно стараться сделать катушку так, чтобы вышеназванные параметры были достигнуты при наибольшем размере емкости на верхнем выводе вторичной обмотки. В данном случае катушка рассчитана на небольшой тороид.
Предполагалось сделать внешний вид всего устройства в стиле Half-Life 1, но эта идея была оставлена на половине пути.
Еще одной мерой по увеличению длины разряда стало уменьшение разрядного штыря на 1см. При этом начал срабатывать ограничитель тока, который был установлен на 150А. Среднее потребление от сети составляет 220В 2-3А, на некоторых нотах ток возрастает до 4А.
После длительных запусков выяснилось, что нагревается первичная обмотка. Похоже, что она тормозит дальнейший рост длины разряда при увеличении длительности рабочего импульса, потому что сделана из провода небольшого диаметра. Немного греются конденсаторы, транзисторы и электролит питания, а самым горячим оказался трансформатор 220/18В, 0,555А. Следовало брать этот трансформатор мощностью 15-20 Ватт, хотя по предварительным расчетам 10Вт было вполне достаточно.

Прерыватель и USB-MIDI переходник.



Рисунок 9 - Пульт управления (Прерыватель)

Прерыватель получился весьма приятный на вид. Внутри корпуса собранная схема прерывателя i1 разработчика BSVi. Все подробности, прошивка и схема на сайте автора. В написании программ для микроконтроллеров типа ATmega разбираться не хотелось и по этому была собрана эта схема с готовой прошивкой.
Прерыватель оказался весьма хорош. Сперва были спалены несколько SMD конденсаторов мощным паяльником и прерыватель работал нестабильно, часто перезагружался, плохо переключались режимы работы. Потом конденсаторы были заменены и всё стало нормально работать. Кроме режима проигрывания MIDI есть стандартные для DRSSTC непрерывный режим и режим с прерываниями. Прерыватель подключается к DRSSTC трех-метровым оптическим патч-кордом.
Для загрузки прошивки в микроконтроллер понадобился программатор. В моем случае он выглядел как на рис.10.


Рисунок 10 - Программатор для ATmega

Использовалась программа USBASP AVRDUDE PROG, она скачена откуда-то из интернета.
Важной частью в этой системе является USB-MIDI переходник. Его можно построить по схеме, которых в интернете много, а можно не мучиться и купить. Я выбрал второй вариант.

Рисунок 11 - USB-MIDI переходник

Ноут-бук или ПК.

В этом пункте всё понятно из названия. Мелодии в формате MIDI проигрываются с помощью плеера в котором есть возможность назначить выходной порт. Например подойдет Midi player 2.6 (by Falcosoft). Его размер около 1 Мб. В основном все мелодии скачены с сайта OneTesla. Вот одна для примера (Ievan Polkka.mid) .

Спустя какое то время катушка модернизировалась до версии 1.2. Статья была написана давно и лежала на жестком диске. Чтоб её не редактировать, изменения отражены на схеме, которая всё-таки была нарисована (хотя не планировалась). Изменился драйвер, транзисторы полумоста, конденсатор питания и куча мелких доработок.

Когда все части собраны и настроены, подключаем катушку Тесла к ноут-буку и устраиваем концерт, но не забываем технику безопасности.

Звучание различается при съемке разными устройствами. Лучше конечно это смотреть и слушать в живую.


К сожалению, не получилось встроить видео с презентацией. Если что, то вот оно .

OneTesla - это небольшая катушка Тесла, подключаемая через порт MIDI и играющая музыку электрическими разрядами. Само устройство, которое в высоту около 25 сантиметров, может выдавать молнии длиной до полуметра. Этот агрегат может устроить неплохое шоу и удивить ваших друзей музыкальной плазмой. Все спецификации устройства открыты и доступны вместе с инструкцией по сборке на сайте проекта .

Как она играет музыку?

Человеческое ухо воспринимает звуковые волны где-то от 20 герц до 20 килогерц, в то время, как устройство резонирует с частотой 230 кГц, что значительно превышает максимальную частоту звука, слышимую человеком. Но можно включать и выключать разряды именно с той частотой, с которой слышен нужный нам звук.

Краткие технические характеристики

Параметр Значение
Первичная катушка 6 витков, радиус 88.9мм, 1.6мм провод (14 AWG)
Вторичная катушка 65мм х 254мм, 0.127мм провод (36 AWG), 1800 витков
Конденсатор CDE 940C30S68K, 0.068μF@3000V
Тороид 200мм х 50мм, покрыт фольгой
Резонансная частота ~230 КГц
Инвертор Полумост на базе IGBT транзисторов FGA60N65SMD, 340 вольт
Длительность импульса 50 мкс при 1 КГц, 150 мкс при 50 Гц)
Максимальная длина разряда 58 см
МК платы-прерывателя ATmega328P-PU


Немного о принципе работы


Полёт шмеля в исполнении OneTesla


К сожалению, не получилось встроить видео с презентацией. Если что, то вот оно .

OneTesla - это небольшая катушка Тесла, подключаемая через порт MIDI и играющая музыку электрическими разрядами. Само устройство, которое в высоту около 25 сантиметров, может выдавать молнии длиной до полуметра. Этот агрегат может устроить неплохое шоу и удивить ваших друзей музыкальной плазмой. Все спецификации устройства открыты и доступны вместе с инструкцией по сборке на сайте проекта .

Как она играет музыку?

Человеческое ухо воспринимает звуковые волны где-то от 20 герц до 20 килогерц, в то время, как устройство резонирует с частотой 230 кГц, что значительно превышает максимальную частоту звука, слышимую человеком. Но можно включать и выключать разряды именно с той частотой, с которой слышен нужный нам звук.

Краткие технические характеристики

Параметр Значение
Первичная катушка 6 витков, радиус 88.9мм, 1.6мм провод (14 AWG)
Вторичная катушка 65мм х 254мм, 0.127мм провод (36 AWG), 1800 витков
Конденсатор CDE 940C30S68K, 0.068μF@3000V
Тороид 200мм х 50мм, покрыт фольгой
Резонансная частота ~230 КГц
Инвертор Полумост на базе IGBT транзисторов FGA60N65SMD, 340 вольт
Длительность импульса 50 мкс при 1 КГц, 150 мкс при 50 Гц)
Максимальная длина разряда 58 см
МК платы-прерывателя ATmega328P-PU


Немного о принципе работы


Полёт шмеля в исполнении OneTesla

Трансформатор, увеличивающий напряжение и частоту во много раз, называется трансформатором Тесла. Энергосберегающие и люминесцентные лампы, кинескопы старых телевизоров, зарядка аккумуляторов на расстоянии и многое другое создано благодаря принципу работы этого устройства. Не будем исключать его использование в развлекательных целях, ведь «трансформатор Тесла» способен создавать красивые фиолетовые разряды – стримеры, напоминающие молнию (рис. 1). В процессе работы образуется электромагнитное поле, способное воздействовать на электронные приборы и даже на организм человека, а при разрядах в воздухе происходит химический процесс с выделением озона. Чтобы сделать трансформатор Тесла своими руками, необязательно иметь широкие познания в области электроники, достаточно следовать этой статье.

Составные части и принцип работы

Все трансформаторы Тесла ввиду похожего принципа работы состоят из одинаковых блоков:

  1. Источник питания.
  2. Первичный контур.

Источник питания обеспечивает первичный контур напряжением необходимой величины и типа. Первичный контур создаёт колебания высокой частоты, генерирующие во вторичном контуре резонансные колебания. В результате на вторичной обмотке образуется ток большого напряжения и частоты, который стремится создать электрическую цепь через воздух - образуется стример.

От выбора первичного контура зависит тип катушки Тесла, источник питания и размер стримера. Остановимся на полупроводником типе. Он отличается простой схемой с доступными деталями, и маленьким питающим напряжением.

Подбор материалов и деталей

Произведём поиск и подбор деталей к каждому вышеперечисленному узлу конструкции:


После намотки изолируем вторичную катушку краской, лаком или другим диэлектриком. Это предотвратит попадание в неё стримера.

Терминал – дополнительная ёмкость вторичного контура, подключённая последовательно. При малых стримерах в нем нет необходимости. Достаточно вывести конец катушки на 0,5–5 см вверх.

После того, как собрали все необходимые детали для катушки Тесла, приступаем к сборке конструкции своими руками.

Конструкция и сборка

Сборку делаем по простейшей схеме на рисунке 4.

Отдельно устанавливаем источник питания. Детали можно собрать навесным монтажом, главное исключить замыкание между контактами.

При подключении транзистора важно не перепутать контакты (рис. 5).

Для этого сверяемся со схемой. Плотно прикручиваем радиатор к корпусу транзистора.

Собирайте схему на диэлектрической подложке: кусок фанеры, пластиковый поднос, деревянная коробка и др. Отделяем схему от катушек диэлектрической пластиной или доской, с миниатюрным отверстием для проводов.

Закрепляем первичную обмотку так, чтобы предотвратить падение и касание со вторичной обмоткой. В центре первичной обмотки оставляем место для вторичной катушки, с учётом того, что оптимальное расстояние между ними 1 см. Каркас использовать необязательно – достаточно надёжного крепления.

Устанавливаем и закрепляем вторичную обмотку. Делаем необходимые соединения согласно схеме. Посмотреть на работу изготовленного трансформатора Тесла можно на видео представленном ниже.

Включение, проверка и регулировка

Перед включением уберите электронные устройства подальше от места испытания, чтобы исключить их поломку. Помните об электробезопасности! Для успешного запуска по порядку выполняем следующие пункты:

  1. Выставляем переменный резистор в среднее положение. При подаче питания, убеждаемся в отсутствии повреждений.
  2. Визуально проверяем наличие стримера. Если он отсутствует, подносим к вторичной катушке люминесцентную лампочку или лампу накаливания. Свечение лампы подтверждает работоспособность «трансформатора Тесла» и наличие электромагнитного поля.
  3. Если устройство не работает, в первую очередь меняем местами выводы первичной катушки, а уже потом проверяем транзистор на пробой.
  4. При первом включении следите за температурой транзистора, при необходимости подключите дополнительное охлаждение.

Отличительной особенностью мощного трансформатора Тесла являются большое напряжение, большие габариты устройства и способ получения резонансных колебаний. Немного расскажем о том, как работает и как сделать трансформатор Тесла искрового типа.

Первичный контур работает на переменном напряжении. При включении, происходит заряд конденсатора. Как только конденсатор заряжается по максимуму, происходит пробой разрядника – устройства из двух проводников с искровым промежутком, наполненным воздухом или газом. После пробоя, образуется последовательная цепь из конденсатора и первичной катушки, называемая LC контуром. Именно этот контур создаёт высокочастотные колебания, которые создают во вторичной цепи резонансные колебания и огромное напряжение (рис. 6).

При наличии необходимых деталей, мощный трансформатор Тесла можно собрать своими руками даже в домашних условиях. Для этого достаточно внести изменения в маломощную схему:

  1. Увеличить диаметры катушек и сечение провода в 1,1 – 2,5 раза.
  2. Добавить терминал в форме тороида.
  3. Поменять источник постоянного напряжения на переменный с высоким повышающим коэффициентом, выдающим напряжение 3–5 кВ.
  4. Изменить первичный контур согласно схеме на рисунке 6.
  5. Добавить надёжное заземление.

Искровые трансформаторы Тесла могут достигать мощности до 4,5 кВт, следовательно, создавать стримеры больших размеров. Наилучший эффект получается при достижении одинаковых показателей частоты обоих контуров. Реализовать это можно расчётом деталей в специальных программах – vsTesla, inca и другие. Скачать одну из русскоязычных программ можно по ссылке: http://ntesla.at.ua/_fr/1/6977608.zip .