Использование теплового расширения в технике. Опыты, эксперименты, теория, практика, решения задач Значение расширения тел природе и технике

Использование теплового расширения в технике. Опыты, эксперименты, теория, практика, решения задач Значение расширения тел природе и технике

Тепловое расширение тел находит широкое применение в технике. Приведем лишь несколько примеров. Две разнородные пластинки (например, железная и медная), сваренные вместе, образуют так называемую биметаллическую пластинку (рис. 9.8). При нагревании такие пластинки изгибаются вследствие того, что одна расширяется сильнее другой. Та из полосок (медная), которая расширяется больше, оказывается всегда с выпуклой стороны (рис. 9.9). Это свойство биметаллических пластинок широко используется для измерения температуры и ее регулирования.

Терморегулятор

На рисунке 9.10 схематически изображено устройство одного из типов регуляторов температуры. Биметаллическая дуга 1 при изменении температуры изменяет свою кривизну. К ее свободному концу прикреплена металлическая пластинка 2, которая при раскручивании дуги прикасается к контакту 3, а при закручивании отходит от него. Если, например, контакт 3 и пластинка 2 присоединены к концам 4, 5 электрической цепи, содержащей нагревательный прибор, то при соприкосновении контакта и пластинки электрическая цепь замкнется: прибор начнет нагревать помещение. Биметаллическая дуга 1 при нагревании начнет закручиваться и при определенной температуре отсоединит пластинку 2 от контакта 3: цепь разорвется, нагревание прекратится. При охлаждении дуга 1, раскручиваясь, снова заставит включиться нагревательный прибор. Таким образом, температура помещения будет поддерживаться на данном уровне. Подобный терморегулятор устанавливают в инкубаторах, где требуется поддерживать температуру постоянной. В быту терморегуляторы установлены в холодильниках, электроутюгах и т. д.

Обод (бандаж) колеса железнодорожного вагона изготавливают из стали, остальную часть колеса делают из более дешевого металла - чугуна. Бандажи на колеса надевают в нагретом состоянии. После охлаждения они сжимаются и поэтому держатся прочно.

Также в нагретом состоянии надевают шкивы, подшипники на валы, железные обручи на деревянные бочки и т. д. Свойство жидкостей расширяться при нагревании и сжиматься при охлаждении используется в приборах, служащих для измерения температуры - термометрах. В качестве жидкостей для изготовления термометров применяют ртуть, спирт и др.

При расширении или сжатии тел возникают огромные механические напряжения, если другие тела препятствуют изменению размеров. В технике используются биметаллические пластинки, изменяющие свою форму при нагревании.

§ 9.5. Примеры решения задач

Задача 1

Диаметр стеклянной пробки, застрявшей в горлышке флакона, d 0 = 2,5 см. Чтобы вынуть пробку, горлышко нагрели до температуры t 1 = 150 °С. Сама пробка успела при этом нагреться до температуры t 2 = 50 °С. Как велик образовавшийся зазор? Температурный коэффициент линейного расширения стекла α 1 = 9 · 10 -6 К -1 .

Решение. Обозначим начальную температуру стеклянного флакона и застрявшей в нем пробки через t 0 . Тогда после нагревания диаметр горлышка флакона будет

  • Хотя линейные размеры и объемы тел при изменении температуры меняются мало, тем не менее это изменение нередко приходится учитывать в практике; в то же время это явление широко используется в быту и технике.

Учет теплового расширения тел

Изменение размеров твердых тел вследствие теплового расширения приводит к появлению огромных сил упругости, если другие тела препятствуют этому изменению размеров. Например, стальная мостовая балка сечением 100 см 2 при нагревании от -40 °С зимой до +40 °С летом, если опоры препятствуют ее удлинению, создает давление на опоры (напряжение) до 1,6 10 8 Па, т. е. действует на опоры с силой 1,6 10 6 Н.

Приведенные значения могут быть получены из закона Гука и формулы (9.2.1) для теплового расширения тел.

Согласно закону Гука механическое напряжение где - относительное удлинение, a E - модуль Юнга. Согласно (9.2.1) . Подставляя это значение относительного удлинения в формулу закона Гука, получим

У стали модуль Юнга Е = 2,1 10 11 Па, температурный коэффициент линейного расширения α 1 = 9 10 -6 К -1 . Подставив эти данные в выражение (9.4.1), получим, что при Δt = 80 °С механическое напряжение σ = 1,6 10 8 Па.

Так как S = 10 -2 м 2 , то сила F = σS = 1,6 10 6 Н.

Для демонстрации сил, появляющихся при охлаждении металлического стержня, можно проделать следующий опыт. Нагреем железный стержень с отверстием на конце, в которое вставлен чугунный стерженек (рис. 9.5). Затем вставим этот стержень в массивную металлическую подставку с пазами. При охлаждении стержень сокращается, и в нем возникают столь большие силы упругости, что чугунный стерженек ломается.

Рис. 9.5

Тепловое расширение тел нужно учитывать при конструировании многих сооружений. Необходимо принимать меры для того, чтобы тела могли свободно расширяться или сжиматься при изменении температуры.

Нельзя, например, туго натягивать телеграфные провода, а также провода линий электропередачи (ЛЭП) между опорами. Летом провисание проводов заметно больше, чем зимой.

Металлические паропроводы, а также трубы водяного отопления приходится снабжать изгибами (компенсаторами) в виде петель (рис. 9.6).

Рис. 9.6

Внутренние напряжения могут возникать при неравномерном нагревании однородного тела. Например, стеклянная бутылка или стакан из толстого стекла могут лопнуть, если налить в них горячей воды. В первую очередь происходит нагрев внутренних частей сосуда, соприкасающихся с горячей водой. Они расширяются и оказывают сильное давление на внешние холодные части. Поэтому может произойти разрушение сосуда. Тонкий же стакан не лопается при наливании в него горячей воды, так как его внутренняя и внешняя части одинаково быстро прогреваются.

Очень малый температурный коэффициент линейного расширения имеет кварцевое стекло. Такое стекло выдерживает, не трескаясь, неравномерное нагревание или охлаждение. Например, в раскаленную докрасна колбочку из кварцевого стекла можно вливать холодную воду, тогда как колба из обычного стекла при таком опыте лопается.

Разнородные материалы, подвергающиеся периодическому нагреванию и охлаждению, следует соединять вместе только тогда, когда их размеры при изменении температуры меняются одинаково. Это особенно важно при больших размерах изделий. Так, например, железо и бетон при нагревании расширяются одинаково. Именно поэтому широкое распространение получил железобетон - затвердевший бетонный раствор, залитый в стальную решетку - арматуру (рис. 9.7). Если бы железо и бетон расширялись по-разному, то в результате суточных и годовых колебаний температуры железобетонное сооружение вскоре бы разрушилось.

Рис. 9.7

Еще несколько примеров. Металлические проводники, впаянные в стеклянные баллоны электроламп и радиоламп, делают из сплава (железа и никеля), имеющего такой же коэффициент расширения, как и стекло, иначе при нагревании металла стекло треснуло бы. Эмаль, которой покрывают посуду, и металл, из которого эта посуда изготовляется, должны иметь одинаковый коэффициент линейного расширения. В противном случае эмаль будет лопаться при нагревании и охлаждении покрытой ею посуды.

Значительные силы могут развиваться и жидкостью, если нагревать ее в замкнутом сосуде, не позволяющем жидкости расширяться. Эти силы могут привести к разрушению сосудов, в которых содержится жидкость. Поэтому с этим свойством жидкости тоже приходится считаться. Например, системы труб водяного отопления всегда снабжаются расширительным баком, присоединенным к верхней части системы и сообщающимся с атмосферой. При нагревании воды в системе труб небольшая часть воды переходит в расширительный бак, и этим исключается напряженное состояние воды и труб. По этой же причине в силовом трансформаторе с масляным охлаждением наверху имеется расширительный бак для масла. При повышении температуры уровень масла в баке повышается, при охлаждении масла - понижается.

Использование теплового расширения в технике

Тепловое расширение тел находит широкое применение в технике. Приведем лишь несколько примеров. Две разнородные пластинки (например, железная и медная), сваренные вместе, образуют так называемую биметаллическую пластинку (рис. 9.8).

Рис. 9.8

При нагревании такие пластинки изгибаются вследствие того, что одна расширяется сильнее другой. Та из полосок (медная), которая расширяется больше, оказывается всегда с выпуклой стороны (рис. 9.9). Это свойство биметаллических пластинок широко используется для измерения температуры и ее регулирования.

Рис. 9.9

Терморегулятор

На рисунке 9.10 схематически изображено устройство одного из типов регуляторов температуры. Биметаллическая дуга 1 при изменении температуры изменяет свою кривизну. К ее свободному концу прикреплена металлическая пластинка 2, которая при раскручивании дуги прикасается к контакту 3, а при закручивании отходит от него. Если, например, контакт 3 и пластинка 2 присоединены к концам 4, 5 электрической цепи, содержащей нагревательный прибор, то при соприкосновении контакта и пластинки электрическая цепь замкнется: прибор начнет нагревать помещение. Биметаллическая дуга 1 при нагревании начнет закручиваться и при определенной температуре отсоединит пластинку 2 от контакта 3: цепь разорвется, нагревание прекратится.

Рис. 9.10

При охлаждении дуга 1, раскручиваясь, снова заставит включиться нагревательный прибор. Таким образом, температура помещения будет поддерживаться на данном уровне. Подобный терморегулятор устанавливают в инкубаторах, где требуется поддерживать температуру постоянной. В быту терморегуляторы установлены в холодильниках, электроутюгах и т. д. Обод (бандаж) колеса железнодорожного вагона изготавливают из стали, остальную часть колеса делают из более дешевого металла - чугуна. Бандажи на колеса надевают в нагретом состоянии. После охлаждения они сжимаются и поэтому держатся прочно.

Также в нагретом состоянии надевают шкивы, подшипники на валы, железные обручи на деревянные бочки и т. д. Свойство жидкостей расширяться при нагревании и сжиматься при охлаждении используется в приборах, служащих для измерения температуры - термометрах. В качестве жидкостей для изготовления термометров применяют ртуть, спирт и др.

При расширении или сжатии тел возникают огромные механические напряжения, если другие тела препятствуют изменению размеров. В технике используются биметаллические пластинки, изменяющие свою форму при нагревании.

Термическим расширением называется изменение размеров и объёма тела под воздействием температуры.

При изменении температуры изменяются размеры твёрдых тел. Расширение под воздействием температуры характеризуется коэффициентом линейного термического расширения .

Изменение линейных размеров тела описывается формулой: l = l 0 (1 + α ⋅ Δ T) , где

l - длина тела;

l 0 - первоначальная длина тела;

α - коэффициент линейного термического расширения;

Δ T - разница температур.

Коэффициент линейного термического расширения показывает, на какую часть первоначальной длины или ширины изменится размер тела, если его температура повысится на 1 градус.

Пример:

\(10\) км железнодорожного пути при увеличении температуры воздуха на \(9\) градусов (например, от \(-5\) до \(+4\)), удлиняются на 10 000 ⋅ 0,000012 ⋅ 9 = 1 , 08 метр. По этой причине между участками рельсов оставляют промежутки.

Термическое расширение надо учитывать и в трубопроводах, там используют компенсаторы - изогнутые трубы, которые при изменении температуры воздуха при необходимости могут сгибаться. На рисунке видно, что произойдёт, если не будет компенсатора.

Инженерам, проектирующим мосты, оборудование, здания, которые подвержены изменениям температуры, необходимо знать, какие материалы можно соединять, чтобы не образовались трещины.

Электрикам, которые протягивают линии электропередачи, необходимо знать, каким изменениям температуры будут подвержены провода. Если летом провода натянуты, то зимой они оборвутся.

При термическом расширении металлов используют автоматические выключатели тепловых приборов. Этот выключатель состоит из двух плотно соединённых пластин различных металлов (с различными термическими коэффициентами). Биметаллические пластины под воздействием температуры сгибаются или выпрямляются, замыкая или размыкая электрическую цепь.

С изменением линейных размеров изменяется также и объём тела. Изменение объёма тела описывается формулой, похожей на формулу линейного расширения, только вместо коэффициента линейного термического расширения используется коэффициент объёмного термического расширения .

Изменение объёма тела под воздействием температуры описывается формулой: V = V 0 (1 + β ⋅ Δ T) , где

V - объём тела;

V 0 - первоначальный объём тела;

β - коэффициент объёмного термического расширения;

Δ T - разница температур.

Коэффициент объёмного термического расширения показывает, на какую часть первоначального объёма изменится объём тела после повышения температуры на 1 градус.

Вещество

Коэффициент объёмного расширения β , K − 1

Ртуть...

Известно, что под действием тепла частицы ускоряют свое хаотичное движение. Если нагревать газ, то молекулы, составляющие его, просто разлетятся друг от друга. Нагретая жидкость сначала увеличится в объеме, а затем начнет испаряться. А что будет с твердыми телами? Не каждое из них может изменить свое агрегатное состояние.

Термическое расширение: определение

Тепловое расширение - это изменение размеров и формы тел при изменении температуры. Математически можно высчитать объемный коэффициент расширения, позволяющий спрогнозировать поведение газов и жидкостей в изменяющихся внешних условиях. Чтобы получить такие же результаты для твердых тел, необходимо учитывать Физики выделили целый раздел для такого рода исследований и назвали его дилатометрией.

Инженерам и архитекторам необходимы знания о поведении разных материалов под воздействием высоких и низких температур для проектировки зданий, прокладывания дорог и труб.

Расширение газов

Тепловое расширение газов сопровождается расширением их объема в пространстве. Это заметили философы-естественники еще в глубокой древности, но построить математические расчеты получилось только у современных физиков.

В первую очередь ученые заинтересовались расширением воздуха, так как это казалось им посильной задачей. Они настолько рьяно взялись за дело, что получили довольно противоречивые результаты. Естественно, такой исход научное сообщество не удовлетворил. Точность измерения зависела от того, какой использовался термометр, от давления и множества других условий. Некоторые физики даже пришли к мнению, что расширение газов не зависит от изменения температуры. Или эта зависимость не полная...

Работы Дальтона и Гей-Люссака

Физики продолжали бы спорить до хрипоты или забросили бы измерения, если бы не Он и еще один физик, Гей-Люссак, в одно и то же время независимо друг от друга смогли получить одинаковые результаты измерений.

Люссак пытался найти причину такого количества разных результатов и заметил, что в некоторых приборах в момент опыта была вода. Естественно, в процессе нагревания она превращалась в пар и изменяла количество и состав исследуемых газов. Поэтому первое, что сделал ученый, - это тщательно высушил все инструменты, которые использовал для проведения эксперимента, и исключил даже минимальный процент влажности из исследуемого газа. После всех этих манипуляций первые несколько опытов оказались более достоверными.

Дальтон занимался этим вопросом дольше своего коллеги и опубликовал результаты еще в самом начале XIX века. Он высушивал воздух парами серной кислоты, а затем нагревал его. После серии опытов Джон пришел к выводу, что все газы и пар расширяются на коэффициент 0,376. У Люссака получилось число 0,375. Это и стало официальным результатом исследования.

Упругость водяных паров

Тепловое расширение газов зависит от их упругости, то есть способности возвращаться в исходный объем. Первым данный вопрос стал исследовать Циглер в середине восемнадцатого века. Но результаты его опытов слишком разнились. Более достоверные цифры получил который использовал для высоких температур папинов котел, а для низких - барометр.

В конце XVIII века французский физик Прони предпринял попытку вывести единую формулу, которая бы описывала упругость газов, но она получилась лишком громоздкая и сложная в использовании. Дальтон решил опытным путем проверить все расчеты, используя для этого сифонный барометр. Не смотря на то что температура не во всех опытах была одинакова, результаты получились очень точными. Поэтому он опубликовал их в виде таблицы в своем учебнике по физике.

Теория испарения

Тепловое расширение газов (как физическая теория) претерпевала различные изменения. Ученые пытались добраться до сути процессов, при которых получается пар. Здесь снова отличился известный уже нам физик Дальтон. Он высказал гипотезу, что любое пространство насыщается парами газа независимо от того, присутствует ли в этом резервуаре (помещении) какой-либо другой газ или пар. Следовательно, можно сделать вывод, что жидкость не будет испаряться, просто входя в соприкосновение с атмосферным воздухом.

Давление столба воздуха на поверхность жидкости увеличивает пространство между атомами, отрывая их друг от друга и испаряя, то есть способствует образованию пара. Но на молекулы пара продолжает действовать сила тяжести, поэтому ученые посчитали, что атмосферное давление никак не влияет на испарение жидкостей.

Расширение жидкостей

Тепловое расширение жидкостей исследовали параллельно с расширением газов. Научными изысканиями занимались те же самые ученые. Для этого они использовали термометры, аэрометры, сообщающиеся сосуды и прочие инструменты.

Все опыты вместе и каждый в отдельности опровергли теорию Дальтона о том, что однородные жидкости расширяются пропорционально квадрату температуры, на которую их нагревают. Конечно, чем выше температура, тем больше объем жидкости, но прямой зависимости между ним не было. Да и скорость расширения у всех жидкостей была разной.

Тепловое расширение воды, например, начинается с нуля градусов по Цельсию и продолжается с понижением температуры. Раньше такие результаты опытов связывали с тем, что расширяется не сама вода, а сужается емкость, в которой она находится. Но некоторое время спустя физик Делюка все-таки пришел к мысли, что причину следует искать в самой жидкости. Он решил найти температуру ее наибольшей плотности. Однако это ему не удалось ввиду пренебрежения некоторыми деталями. Румфорт, занимавшийся изучением этого явления, установил, что максимальная плотность воды наблюдается в пределах от 4 до 5 градусов по Цельсию.

Тепловое расширение тел

В твердых телах главным механизмом расширения является изменение амплитуды колебаний кристаллической решетки. Если говорить простыми словами, то атомы, входящие в состав материала и жестко сцепленные между собой, начинают «дрожать».

Закон теплового расширения тел сформулирован так: любое тело с линейным размером L в процессе нагревания на dT (дельта Т - разница между начальной температурой и конечной), расширяется на величину dL (дельта L - это производная коэффициента линейного теплового расширения на длину объекта и на разность температуры). Это самый простой вариант этого закона, который по умолчанию учитывает, что тело расширяется сразу во все стороны. Но для практической работы используют куда более громоздкие вычисления, так как в реальности материалы ведут себя не так, как смоделировано физиками и математиками.

Тепловое расширение рельса

Для прокладки железнодорожного полотна всегда привлекают инженеров-физиков, так как они могут точно вычислить, какое расстояние должно быть между стыками рельсов, чтобы при нагревании или охлаждении пути не деформировались.

Как уже было сказано выше, тепловое линейное расширение применимо для всех твердых тел. И рельс не стал исключением. Но есть одна деталь. Линейное изменение свободно происходит в том случае, если на тело не воздействует сила трения. Рельсы жестко прикреплены к шпалам и сварены с соседними рельсами, поэтому закон, который описывает изменение длинны, учитывает преодоление препятствий в виде погонных и стыковых сопротивлений.

Если рельс не может изменить свою длину, то с изменением температуры в нем нарастает тепловое напряжение, которое может как растянуть, так и сжать его. Этот феномен описывается законом Гука.

Билет №3

«Тепловое расширение тел. Термометр. Шкалы температур. Значение теплового расширения тел в природе и технике. Особенности теплового расширения воды»

Тепловое расширение - изменение линейных размеров и формы тела при изменении его температуры.

Причина : увеличивается температура тела -> увеличивается скорость движения молекул -> увеличивается амплитуда колебаний -> увеличивается расстояние между молекулами, а значит, и размеры тела.

Различные тела при нагревании расширяются по-разному, т. к. массы молекул различны, следовательно, различается кинетическая энергия и межмолекулярные расстояния изменяются по-разному.

Количественно тепловое расширение жидкостей и газов при постоянном давлении характеризуется объёмным коэффициентом теплового расширения (β).

V=V0(1+β(tконечная-tначальная))

Где V – объем тела при конечной температуре, V0 - объем тела при начальной температуре

Для характеристики теплового расширения твёрдых тел дополнительно вводят коэффициент линейного теплового расширения (α)

l=l0 (1+α(tконечная-tначальная))

Где l – длина тела при конечной температуре, l0 - длина тела при начальной температуре

Термо́метр - прибор для измерения температуры

Действие термометра основано на тепловом расширении жидкости.

Изобретен Галилеем в 1597 году.

Виды термометров:

· ртутные (от -35 до 750 градусов Цельсия)

· спиртовые (от -80 до 70 градусов Цельсия)

· пентановые (от -200 до 35 градусов Цельсия)

Шкалы:

Шкала Фаренгейта . Фаренгейт в 1732 г. - наполнял трубки спиртом, позже перешел к ртути. Нуль шкалы – температура смеси снега с нашатырем или поваренной солью. Замерзание воды – 32°F. Температура здорового человека – 96°F. Вода кипит при 212°F.

Шкала Цельсия . Шведский физик Цельсий в 1742 г. Температура замерзания жидкости - 0°C, а кипения - 100°C

Шкала Кельвина . В 1848 г. английский физик Уильям Томсон (лорд Кельвин). Точка отсчета – «абсолютный нуль» - -273,15°С. При этой температуре прекращается тепловое движение молекул. 1°К=1°С

На самом деле, абсолютный нуль не достижим .

В быту и технике тепловое расширение имеет очень большое значение. На электрических железных дорогах необходимо зимой и летом сохранять постоянное натяжение провода, питающего энергией электровозы. Для этого натяжение провода создается тросом, один конец которого соединен с проводом, а другой перекинут через блок и к нему подвешен груз.

При сооружении моста один конец фермы кладется на катки. Если этого не сделать, то при расширении летом и сжатии зимой ферма будет расшатывать устои, на которые опирается мост.

При изготовлении ламп накаливания часть провода проходящего внутри стекла необходимо делать из такого материала, коэффициент расширения которого такой же как у стекла иначе оно может треснуть.

Провода ЛЭП никогда не натягивают во избежание разрыва.

Паропроводы снабжают изгибами, компенсаторами.

Тепловое расширение воздуха играет большую роль в явлениях природы . Тепловое расширение воздуха создает движение воздушных масс в вертикальном направлении (нагретый, менее плотный воздух поднимается вверх, холодный и менее плотный вниз). Неравномерный нагрев воздуха в разных частях земли приводит к возникновению ветра. Неравномерный разогрев воды создает течения в океанах.

При нагревании и охлаждении горных пород вследствие суточных и годовых колебаний температуры (если состав породы неоднороден) образуются трещины, что способствует разрушению пород.

Самое распространенное на поверхности Земли вещество - вода - имеет особенность, отличающую ее от большинства других жидкостей. Она расширяется при нагревании только свыше 4 °С. От 0 до 4 °С объем воды, наоборот, при нагревании уменьшается. Таким образом, наибольшую плотность вода имеет при 4 °С. Эти данные относятся к пресной (химически чистой) воде. У морской воды наибольшая плотность наблюдается примерно при 3 °С. Увеличение давления тоже понижает температуру наибольшей плотности воды.