Характеристика высоковязких нефтей и условия залегания их скоплений. Транспортировка высоковязкой нефти

Характеристика высоковязких нефтей и условия залегания их скоплений. Транспортировка высоковязкой нефти

высоковязкий нефть разработка месторождение

Для исключения убыточности и нерентабельности разработки месторождений высоковязких нефтей и природных битумов в России и за рубежом ведутся работы, направленные на совершенствование и создание технологий повышения нефтеотдачи, позволяющих разрабатывать вышеуказанные месторождения с наибольшей экономической эффективностью.

В сфере разработки месторождений трудноизвлекаемого сырья, необходимо отметить деятельность таких компаний как «Удмуртнефть», «Татнефть», «РИТЭК».

После создания в 1973 г. в Удмуртии ПО «Удмуртнефть» первые попытки разработки основных месторождений с применением традиционных способов - редкими сетками скважин с заводнением - не дали положительных результатов. Скважины имели низкие дебиты, наблюдались быстрые прорывы закачиваемой воды по наиболее проницаемым пластам и пропласткам, не достигались проектные отборы и величины текущей нефтеотдачи, резко снижалась рентабельность освоения месторождений. Из-за применения в расчетах упрощенных гидродинамических моделей без учета осложняющих факторов оказались существенно завышенными проектные технико-экономические показатели разработки и особенно значения конечной нефтеотдачи, которые принимались проектами в пределах 34-45%.

Поэтому уже в 1975 г. были начаты масштабные комплексные научные исследования по созданию принципиально новых технологий повышения нефтеотдачи. Были организованы целенаправленные теоретические и экспериментальные исследования особенностей механизма нефтеотдачи в сложных трещинно-порово-кавернозных коллекторах с нефтями повышенной и высокой вязкости.

Накопленный мировой опыт разработки залежей с высоковязкими нефтями, содержащимися главным образом в терригенных коллекторах, доказывал эффективность использования тепловых методов (воздействие горячей водой - ВГВ и паротепловое воздействие - ПТВ). Однако для карбонатных коллекторов с тяжелыми вязкими нефтями подобных разработок не было. В Удмуртии разработка технологий освоения трудноизвлекаемых запасов в карбонатных коллекторах велась в двух направлениях: 1) поиск и создание технологий физико-химического воздействия на пласт, 2) тепловое воздействие на пласт.

Итогом целенаправленных научно-практических исследований стало создание принципиально новых технологий и способов рациональной разработки и повышения нефтеотдачи для решения проблемы эксплуатации сложнопостроенных месторождений с карбонатными коллекторами. Не имеющие аналогов в мировой практике термополимерные и термоциклические технологии воздействия на пласт научно обоснованы на уровне изобретений и патентов, испытаны и широко внедрены в производство. Если традиционно применяемые технологии заводнения в карбонатных коллекторах с нефтями повышенной и высокой вязкости могли обеспечить конечную нефтеотдачу не более 20-25%, то новые технологии позволяют довести нефтеотдачу до 40-45%.

Сущность нового подхода заключается в том, что при воздействии растворами полимера (полиакриламид концентрации 0,05-0,10%) удается существенно выравнивать профили приемистости в нагнетательных скважинах, а главное - значительно увеличивать коэффициент охвата неоднородного коллектора рабочим агентом. За счет выравнивания соотношения вязкостей вытесняемой и вытесняющей фаз происходит гашение вязкостной неустойчивости фронтов вытеснения - неконтролируемых прорывов воды к добывающим скважинам.

Исследования и последующий промышленный опыт показали, что технологии полимерного воздействия повышают в 1,5-1,7 раза конечную текущую нефтеотдачу по сравнению с таковой от воздействия необработанной водой, т.е. при заводнении существенно ниже динамика обводнения добывающих скважин и выше их рабочие дебиты. Разработанная новая технология термополимерного воздействия (ТПВ) предусматривает закачку в пласт нагретого до 80-90 °С полимерного раствора той же концентрации, что и холодный раствор.

Существенное улучшение механизма извлечения нефти из пластов при ТПВ заключается в том, что закачиваемый горячий полимерный раствор после прохождения по пласту снижает свою температуру до пластовой, тем самым увеличивая свою вязкость на фронте вытеснения, что приводит к его выравниванию и увеличению коэффициента охвата пласта. Причем этот процесс в пласте оказывается саморегулируемым, что особенно важно в трещиноватых коллекторах. На Мишкинском и Лиственском месторождении месторождениях дополнительная добыча нефти за счет технологии ТПВ превысила 560 тыс. т. Так, 1 т сухого полимера позволяет дополнительно добывать 263 т нефти.

В целях совершенствования технологии ТПВ была разработана новая технология термополимерного воздействия с добавлением полиэлектролита (ТПВПЭ), способствующего замедлению возможной деструкции полимера и более глубокому проникновению его в пласт. Кроме того, используя данную технологию, удалось существенно сократить расход дорогостоящего полимера (на 15-20%), снизив тем самым себестоимость добытой нефти. Дальнейшее совершенствование технологии ТПВ шло по пути значительного снижения энергоемкости и ресурсосбережения, что привело к разработке технологии циклического внутрипластового полимерно-термического воздействия (ЦВПТВ). Здесь закачка теплоносителя и раствора полимера осуществляется уже в несколько циклов, после чего предусматривается закачка обычной воды. Цикличность процесса ЦВПТВ приводит к увеличению охвата пласта рабочим агентом, интенсификации капиллярных и термоупругих эффектов и сокращению расхода химреагента. Реализация проекта началась на Ижевском месторождении, что позволило дополнительно добыть более 400 тыс. т нефти и достичь конечной нефтеотдачи 35,4 вместо 11,5% при существующем ныне режиме истощения. Применение технологии ЦВПТВ на Лиственском месторождении даст возможность получить дополнительно 2,3 млн. т нефти, увеличить извлечение нефти на 8% в сравнении с таковым при холодном полимерном воздействии (ХПВ). В качестве теплоносителей для нагнетания в пласт с целью повышения нефтеотдачи в настоящее время используется перегретая горячая вода (t=260 °C).

Термические методы на месторождениях высоковязких нефтей обеспечивают кратное увеличение нефтеотдачи относительно таковой при естественных режимах разработки и методах заводнения. В механизме нефтеизвлечения выделяются три основных фактора:

Улучшение отношения подвижностей нефти и воды;

Тепловое расширение пластовой системы;

Улучшение проявления молекулярно-поверхностных сил в пласте.

Внедрение технологий термического воздействия было начато на Гремихинском месторождении. Основной объект разработки - залежь пласта А4 башкирского яруса среднего карбона, со сложными трещинно-порово-кавернозными крайне неоднородными коллекторами. Режим пласта упруговодонапорный. Было ясно, что эффективность разработки месторождения традиционными способами будет низкой. Нефтеотдача, на естественном режиме составляет не более 10-12%. Поэтому в 1983 г. были начаты экспериментальные работы по нагнетанию в пласт теплоносителя: горячей воды с температурой на устье скважин 260 °С.

Однако эта технология весьма энергоемка, требует крупных материальных затрат, поэтому специалистами ОАО «Удмуртнефть» совместно с учеными ряда институтов проводились работы по созданию принципиально новых ресурсо и энергосберегающих технологий, позволяющих вывести заведомо нерентабельные запасы высоковязких нефтей Гремихинского месторождения в разряд прибыльных.

В результате созданы, запатентованы и внедрены в производство принципиально новые высокоэффективные технологии теплового воздействия: импульсно-дозированное тепловое воздействие (ИДТВ), импульсно-дозированное тепловое воздействие с паузой (ИДТВ(П), теплоциклическое воздействие на пласт (ТЦВП) и его модификации.

Сущность технологии ИДТВ заключается в многократном воздействии на матрицу попеременно и строго рассчитанными циклами «нагрев - охлаждение», что способствует более полному вытеснению нефти при поддержании в пласте так называемой «эффективной температуры». Это понятие положено в основу определения необходимых объемов теплоносителя и холодной воды для обеспечивания значительного сокращения энерго- и ресурсозатрат. Интенсификация добычи нефти в режиме ИДТВ определяется ускорением процесса охвата объекта разработки тепловым воздействием.

По сравнению с ПТВ и ВГВ циклический процесс позволяет использовать теплогенерирующие установки для большого числа нагнетательных скважин, так как в периоды нагнетания порции холодной воды теплоноситель нагнетается в другие скважины. При неоднократном повторе циклов смены температур, т.е. при термоциклическом воздействии на матрицу, величина нефтеотдачи достигает 37%, что на 9% выше, чем при заводнении.

В техническом исполнении ИДТВ особых дополнительных конструкций и установок не требует. Применяются стандартные паронагнетательные скважины, внутрискважинное устьевое и наземное оборудование.

В технологии ИДТВ(П) закачка вытесняющих агентов ведется не непрерывно, как в ИДТВ, а с кратковременными остановками (паузами) в периоды нагнетания порций холодной воды. Назначение пауз - периодическое создание в пласте перепадов давления с целью нарушения установившихся потоков флюидов и вовлечения в активную разработку низкопроницаемых зон. Продолжительность паузы принимается равной времени восстановления давления в пласте после остановки скважины. Технология ИДТВ(П), обладая всеми свойствами технологии ИДТВ, обеспечивает увеличение нефтеизвлечения до 40%.

Сущность технологии ТЦВП заключается в организации единого технологического процесса комплексного теплового воздействия на пласт через систему нагнетательных и добывающих скважин. Осуществление одного полного цикла ТЦВП включает: нагнетание теплоносителя в пласт одновременно через центральную нагнетательную и три добывающие скважины, расположенные через одну в 7-точечном элементе, при этом отбор жидкости ведут через оставшиеся три добывающие скважины. Затем происходит смена функции группы добывающих скважин - находящиеся под закачкой теплоносителя переводятся на режим отбора и наоборот; все добывающие скважины переводятся на режим отбора, закачку теплоносителя осуществляют через центральную нагнетательную скважину. Технология предусматривает осуществление трех-пяти таких циклов, что обеспечивает практически полный охват вытеснением всего площадного элемента. Циклический процесс приводит к периодической смене направлений фильтрационных потоков, что является сдерживающим фактором обводнения продукции добывающих скважин. Расчетная конечная нефтеотдача достигает 45%. Если рассматривать зону реагирования, то здесь доля нефти, добытой за счет термических методов, составляет 75%.

Экономическая эффективность от внедрения тепловых методов на Гремихинском месторождении составила около 525 млн р., в том числе по технологиям: ИДТВ - 211 млн р., ИДТВ(П) - 190 млн р., ТЦВП - 64 млн р.

Об эффективности технологий свидетельствует уровень текущей нефтеотдачи (42%) на опытных участках их применения, тогда как прогнозная конечная нефтеотдача при заводнении оценивается в пределах 20-25%.

Объемы дополнительно добытой нефти за счет новых технологий, достигнутые коэффициенты нефтеизвлечения в пределах опытных участков и на объектах в целом свидетельствуют о высокой эффективности внедряемых термических и термополимерных методов на месторождениях высоковязких нефтей Удмуртии. Расчеты себестоимости добычи нефти при внедрении новых технологий по сравнению с традиционными подходами убедительно доказывают их более высокую экономическую эффективность.

Практический опыт разработки Гремихинского, Мишкинского и Лиственского месторождений и расчеты себестоимости добычи нефти при достижении конечных значений нефтеизвлечения показали, что себестоимость добычи нефти при использовании созданных в ОАО «Удмуртнефть» физико-химических и термических методов повышения нефтеотдачи пластов ниже, чем при естественном режиме и заводнении. В результате стало возможным рентабельное применение новых технологий при существующих ценах на нефть.

Таким образом, новые технологии позволили устранить главное препятствие на пути применения тепловых методов при разработке месторождений вязких нефтей - большие затраты, поскольку традиционные тепловые методы по затратам примерно в 2 раза выше, чем при заводнении.

Несмотря на накопленный опыт в области тепловых методов воздействия на пласты, для отечественной нефтяной промышленности представляется крайне необходимым поиск и создание новых более совершенных технологий разработки залежи тяжелый нефтей и битумов. Это обусловлено как структурой «нетрадиционных» запасов нефти, так и необходимостью более полной выработки запасов углеводородов при достаточной высокой эффективности их добычи. Как уже отмечалось выше, более 2/3 извлекаемых запасов «нетрадиционных» углеводородов в России приходится на битумы, а не на тяжелую нефть. Геологические ресурсы природных битумов на порядок превышают извлекаемые запасы тяжелой нефти. Для разработки таких месторождений с достижением приемлемыми значениями коэффициентов извлечения необходимы новейшие тепловые методы, превосходящие по эффективности уже традиционные технологии паротеплового воздействия. Одним из таких методов может явиться парогравитационный дренаж (SAGD) (Рис. 9), который на сегодняшний день в мире зарекомендовал себя как очень эффективный способ добычи тяжелой нефти и природных битумов. В классическом описании эта технология требует бурения двух горизонтальных скважин, расположенных параллельно одна над другой, через нефтенасыщенные толщины вблизи подошвы пласта. Верхняя горизонтальная скважина используется для нагнетания пара в пласт и создания высокотемпературной паровой камеры.

Процесс парогравитационного воздействия начинается со стадии предпрогрева, в течение которой (несколько месяцев) производится циркуляции пара в обеих скважинах. При этом за счет кондуктивного переноса тепла осуществляется разогрев зоны пласта между добывающей и нагнетательной скважинами, снижается вязкость нефти в этой зоне и, тем самым, обеспечивается гидродинамическая связь между скважинами. На основной стадии добычи производится уже нагнетание пара в нагнетательную скважину.

Рис. 9 Схема установки для добычи битума в режиме парогравитационного дренажа. Условные обозначения: 1 - лебедка; 2 - устьевое оборудование; 3,4 - эксплуатационные колонны соответственно добывающей и нагнетательной скважин; 5 - сваб; 6 - канат.

Закачиваемый пар, из-за разницы плотностей, пробивается к верхней части продуктивного пласта, создавая увеличивающуюся в размерах паровую камеру. На поверхности раздела паровой камеры и холодных нефтенасыщенных толщин постоянно происходит процесс теплообмена, в результате которого пар конденсируется в воду и вместе с разогретой нефтью стекают вниз к добывающей скважине под действием силы тяжести. Рост паровой камеры вверх продолжается до тех пор, пока она не достигнет кровли пласта, а затем она начинает расширяться в стороны. При этом нефть всегда находится в контакте с высокотемпературной паровой камерой. Таким образом, потери тепла минимальны, что делает этот способ разработки выгодным с экономической точки зрения.

Для повышения добычи и снижения энергозатрат некоторые компании начинают комбинировать методы VAPEX и SAGD. Одним из решений является технология SAP (Solvent Aided Process), в которой объединены преимущества указанных методов. В процессе SAP небольшое количество углеводородного растворителя вводится в качестве добавки в пар, закачиваемый при применении технологии SAGD. В то время как пар является основным теплоносителем и снижает вязкость нефти, добавка растворителя способствует ее разжижению в еще большей степени. Хотя улучшение экономических показателей зависит от конкретной ситуации, анализ полученных результатов показывает экономическую выгоду перехода с процесса SAGD на SAP.

В Канаде под закачкой растворителя подразумевается закачка углеводородных газов (парафиновых растворителей), таких как метан, пропан, бутан и их смеси. Этот метод требует наличия поблизости источника углеводородных газов и высокотехнологичного оборудования для их закачки. В то время как, месторождения сверхвязких нефтей Республики Татарстан характеризуются малой глубиной залегания продуктивного пласта (менее 100 м) и низкими пластовыми давлениями. В таких условиях применение данных растворителей нецелесообразно. Наиболее подходящими растворителями для вытеснения сверхвязких нефтей, содержащихся в слабоцементированных песчаниках уфимского яруса, являются углеводородные жидкости (нефтяные растворители), вязкость которых меньше вязкости нефти.

В мае 2006 г. специалистами ОАО «Татнефть» начат уникальный проект по добыче сверхвязких нефтей на Ашальчинском месторождении с использованием технологии парогравитационного воздействия. Для повышения ее эффективности была проведена экспериментальная оценка использования нефтяных растворителей совместно с закачкой пара. С целью выбора подходящего растворителя для вытеснения сверхвязких нефтей Ашальчинского и Мордово-Кармальского месторождений исследованы физико-химические свойства следующих растворителей: миа-прома, кичуйского нестабильного бензина, абсорбента Н, девонской нефти, нефраса 120/200, смесового растворителя «МС-50», нефраса 130/150, нефраса 150/200, нефраса 150/300, стерлитамакского абсорбента, дистиллята, дизельного топлива, абсорбента А-2, печного топлива.

Установлено, что самой низкой растворяющей способностью обладает дистиллят, производимый на базе Азнакаевской НГДУ «Азнакаевскнефть» (количество растворенной нефти составляет 4,67%), а самой высокой - нефрас 150/300 (15,1%).

Установлено, что все исследованные нефтяные растворители, кроме дистиллята, применимы в технологиях паротеплового воздействия, так как они не осаждают асфальтосмолистые вещества из сверхвязкой нефти. Анализ результатов исследований свидетельствует о том, что все изученные нефтяные растворители ускоряют разрушение водонефтяных эмульсий, приготовленных на основе сверхвязкой нефти Ашальчинского и Мордово-Кармальского месторождений при температуре 95 и 20 °С. Полученные результаты позволяют рекомендовать для при - менения в технологиях VAPEX и SAP в Татарстане нефтяные растворители, такие как абсорбент и нефрас, которые полностью соответствуют требованиям, предъявляемым к растворителям, используемым совместно с тепловыми методами.

Интересна технология инновационного технико-технологического комплекса парогазового воздействия разработанная в ОАО «РИТЭК». Суть ее состоит в том, что в парогазогенераторной установке теплоноситель образуется непосредственно в призабойной зоне пласта (рис. 10). При генерации теплоносителя в призабойной зоне тепловые потери при транспортировке пара практически отсутствуют. Экономичность таких устройств по эффективности сжигания топлива примерно на 30% выше, чем у наземных установок.

В парогазогенераторе для генерации парогазовой смеси используются только жидкие компоненты: вода и монотопливо (система, в которой все необходимые для реакции компоненты содержатся в одном жидкостном потоке). Кроме того, при работе парогазогенератора в нефтяной пласт нагнетается не чистый пар, а его смесь с продуктами сгорания, так называемая парогазовая смесь. Парогаз оказывает на пласт комбинированное воздействие: тепловое и физико-химическое, так как в его состав входят, помимо водяного пара, углекислый газ и азот. Таким образом, в парогазогенераторах обеспечивается практически полное использование химической энергии топлива, отсутствуют выбросы отработанных газов в атмосферу, а тепловое воздействие на пласт дополняется физико-химическим.

В мае 2009 г. в скв. 249 Мельниковского месторождения в Республике Татарстан были начаты опытно-промысловые испытания парогазогенераторного комплекса на монотопливе, которые уже дали положительные результаты. Это завершающий этап разработки уникальной комплексной технологии, позволяющей осуществлять добычу высоковязкой нефти на больших глубинах. Данная технология и разработанный комплекс оборудования открывают большие возможности для добычи нетрадиционного сырья, в частности в Республике Татарстан, где сосредоточены значительные запасы высоковязкой нефти.

Рис. 10. Принципиальная схема установки парогазогенератора на монотопливе: 1 - станция управления; 2 - монотопливо; 3 - вода; 4 - плунжерный насос

Введение

Важнейшей составляющей сырьевой базы нефтяной отрасли не только России, но и ряда других нефтедобывающих стран мира являются запасы высоковязких тяжелых нефтей и природных битумов. По разным оценкам их запасы составляют от 790 млрд. т. до 1 трлн. т., что в 5–6 раз больше остаточных извлекаемых запасов нефтей малой и средней вязкости, составляющих примерно 162 млрд. тонн.

На сегодня высоковязкие нефти и битумы не самый востребованный вид углеводородного сырья, однако, в качестве альтернативы традиционной нефти и газу некоторые страны выбрали именно его. Особые перспективы применения связаны с внедрением технологий производства синтетической нефти. Синтетической является почти половина канадской нефти, устойчиво растут темпы добычи битумов и производства нефти на его основе в Венесуэле.

Геологические запасы высоковязкой нефти и битумов в России составляет от 6 до 75 млрд. тонн, однако их применение требует использования специальных дорогостоящих технологий, так как они сложны в переработке, из-за высокой вязкости их сложно перекачивать, они плохо протекают в скважине, и даже при больших запасах трудно отбирать большие дебиты. Высоковязкие нефти на рынке стоят дешевле, относятся к категории низкосортных, и особой охоты за ними, с целью получения больших прибылей пока нет, поэтому не многие российские компании готовы вкладывать значительные средства в разработку месторождений и переработку высоковязких нефтей.

К сожалению, пока добыча природных битумов и высоковязких нефтей убыточна. Как всякое новое перспективное производство, освоение ресурсов и организация переработки тяжелых нефтей требует на первых порах поддержки.

Необходимы срочные меры для стимулирования освоения месторождений высоковязких нефтей. Говоря о стимулировании этого направления, необходимо, на мой взгляд, отметить то, что оно имеет место быть, но к несчастью в той мере, которая не позволяет в полном объеме раскрываться такому важному вектору нефтяной отрасли, как промышленное освоение запасов тяжелых нефтей, включая, конечно, и создание соответствующей инфраструктуры по сбору, транспортировке и переработке этого вида углеводородов.

Относительно географии запасов высоковязких нефтей и природных битумов следует отметить то, что бассейны с данными углеводородами распространены в основном на европейской территории России: Волго-Уральский, Днепровско-Припятский, Прикаспийский и Тимано-Печорский. Исключение составляет Енисейско-Анабарский бассейн с высоковязкими нефтями, который находится в Восточной Сибири. На территории этих бассейнов содержится большое количество месторождений труднодобываемого сырья. Из них можно выделить наиболее известные, изученные и разрабатываемые месторождения, такие как: Усинское и Ярегское (республика Коми), Гремихинское, Мишкинское, Лиственское (Удмуртия), Южно-Карское, Зыбза-Глубокий Яр, Северо-Крымское (Краснодарский край), Ашальчинское и Мордово-Кармальское (Татария).

Выше указанные месторождения используются в качестве объектов опытно-промышленной разработки высоковязкой нефти и природных битумов.

Такие компании как ОАО «Лукойл», ОАО «РИТЭК», ОАО «Коминефть», ОАО «Удмуртнефть», ОАО «Северная нефть» ведут активные работы по изучению, совершенствованию и созданию технологий разработки залежей тяжелых нефтей. Изучаются и совершенствуются методы воздействия горячей водой, растворителями, щелочами, паром, кислотами, технологии сухого и влажного внутрипластового горения, комбинации методов.

В данной работе будут рассмотрены различные методы разработки месторождений с нефтью повышенной и высокой вязкости, а также некоторые методы разработки месторождений природных битумов. Следует отметить то, что методы разработки битумных месторождений могут существенно отличаться от методов разработки месторождений вязких нефтей, но в некоторых случаях методы могут быть применимы как к одним, так и к другим месторождениям. На выбор метода главным образом влияют геолого-физические свойства нефтесодержащих коллекторов и физические свойства насыщающего флюида.

Общие сведения о месторождениях высоковязких нефтей и природных битумов

По наиболее широко используемой в мировой практике классификации тяжелыми нефтями считаются углеводородные жидкости с плотностью 920–1000 кг/м 3 и вязкостью от 10 до 100 мПа·с, а природными битумами – слаботекучие или полутвердые смеси преимущественно углеводородного состава с плотностью более 1000 кг/ м 3 и вязкостью выше 10000 мПа·с. Промежуточную группу между битумами и тяжелыми нефтями образуют так называемые сверхтяжелые нефти с вязкостью от 100 до 10000 мПа·с и плотностью около или несколько более 1000 кг/м 3. Тяжелые и сверхтяжелые нефти многие авторы объединяют под общим названием – тяжелые нефти или высоковязкие нефти.

Вязкость в пластовых условиях для месторождений тяжелой нефти варьируется от относительно небольших значений 20 мПа·с до величин вязкости близких к значениям природного битума (9000 мПа·с). При этом большинство месторождений имеют вязкость в пределах 1000 мПа·с.

Обычно коллекторы месторождений тяжелых нефтей характеризуются довольно высокими емкостными свойствами. Значения пористости могут лежать в пределах от 20% до 45%. При этом для коллекторов характерна расчлененность и значительная неоднородность фильтрационных свойств (проницаемость может изменяться от сотых долей до нескольких единиц мкм 2).

Залежи тяжелых нефтей встречаются на всех диапазонах глубин от 300 метров до глубин свыше 1500 метров. При этом доля балансовых запасов высоковязких нефтей расположенных на глубинах свыше 1500 метров составляет только 5% всех запасов. Наиболее значимые по запасам месторождения расположены в диапазонах глубин 1000–1500 метров. Очень часто месторождения высоковязкой нефти представляют собой сложную многопластовую систему, в которой различные этажи нефтеносности имеют не только различные емкостно-фильтрационые свойства, но и отличные друг от друга свойства пластового флюида.

Основные месторождения природных битумов располагаются на внешних бортах мезозой-кайнозойских краевых прогибов, примыкающих к щитам и сводам древних платформ (Канадский, Гвианский щиты, Оленекский свод). Месторождения могут быть пластовые, жильные, штокверковые. Пластовые месторождения (до 60 м) охватывают, нередко, многие тысячи квадратных километров (Атабаска, Канада).

Жильные и штокверковые месторождения формируются на путях вертикальной миграции углеводородов по тектоническим трещинам, зонам региональных разрывов. Крупнейшие жильные тела в Турции (Харбол, Авгамасья) достигают длины 3,5 км при мощности 20 – 80 м и прослеживаются до глубины 500 м. Покровные залежи образуются за счет излившихся нефтей. Известны так называемые асфальтовые озера (Охинское на Сахалине, Пич-Лейк на о. Тринидад, Гуаноко в Венесуэле).

Природные битумы генетически представляют собой, в различной степени, дегазированные, потерявшие легкие фракции, вязкие, полутвердые естественные производные нефти (мальты, асфальты, асфальтиты). Кроме повышенного содержания асфальтено-смолистых компонентов (от 25 до 75% мас.), высокой плотности, аномальной вязкости, обусловливающие специфику добычи, транспорта и переработки, природные битумы отличаются от маловязких нефтей значительным содержанием серы и металлов, особенно пятиокиси ванадия V2O5 и никеля (Ni) в концентрациях, соизмеримых с содержанием металлов в промышленных рудных месторождениях в России и странах СНГ (V2O5 до 7800г/т) и за рубежом (V2O5 до 3500 г./т). Наиболее обогащены указанными компонентами природные битумы месторождений Волго-Уральской битумонефтегазоносной провинции. Так, в битумах (мальта-высокосмолистая нефть) содержание серы достигает 7,2% мас., aV2O5 и Niсоответственно 2000 г./т и 100 г./т. В асфальтитах Оренбуржья концентрация серы превышает 6% – 8% мас., aV2O5 и Ni соответственно 6500 г./т в 640 г./т. Таким образом, месторождения природных битумов необходимо рассматривать не только как источник мономинерального сырья для получения только нефти и продуктов её переработки, а, прежде всего с позиций поликомпонентного сырья.

В России основные перспективы поиска природных битумов, связаны с породами пермских отложений центральных районов Волго-Уральской битумонефтегазоносной провинции, т.е. как раз на той территории, где запасы обычной нефти выработаны в наибольшей мере по сравнению с другими нефтедобывающими регионами России. Почти 36% запасов битумов России находятся на территории Татарстана, который по этому показателю занимает ведущее место в стране. Большая часть скоплений битумов в пермских отложениях Татарии приурочена к пластам, залегающим на глубине от 50 до 400 м и охватывающим почти весь разрез пермской системы. Битумы тяжелые (плотность 962,6–1081 кг/м 3), высоковязкие (до десятков и сотен тысяч мПа·с), высокосмолистые (19,4–48,0%) и сернистые (1,7–8,0%).Битумная часть пермских отложений представляет собой сложнопостроенную толщу карбонатных и терригенных коллекторов, образующих природные резервуары с широким диапазоном коллекторских свойств. Другие регионы сосредоточения природных битумов представлены территориями Самарской, Оренбургской областей, Северного Сахалина, Северного Кавказа, Республики Коми и некоторыми областями Сибири.

Частный пример месторождений тяжелых нефтей. Месторождение Ярегское

Ярегское месторождение, в административном отношении, находится в центральном промышленном районе Республики Коми, с высокоразвитой инфраструктурой, в 18 км к юго-западу от города Ухты. Существующие на месторождении посёлки (Ярега, Первомайский, Нижний Доманик) соединены между собой и городом Ухта дорогой с асфальтобетонным покрытием. В пределах поселка Ярега находится железнодорожная станция Ярега, северной магистральной железной дороги Воркута-Москва. Ярегское нефтетитановое месторождение является потенциальной сырьевой базой для обеспечения рынка России продуктами переработки титановой руды и тяжелой нефти. Уникальность его состоит в том, что, кроме больших запасов нефти, оно содержит огромные запасы титановой руды – более 40% всех запасов титанового сырья России. Месторождение относится к Восточно-Тиманской нефтегазоносной области Тимано-Печорской нефтегазоносной провинции.

Тектоническая принадлежность: Ухтинская брахиантиклинальная складка. Типструктуры: брахиантиклиналь.

Приурочено к широкой пологой асимметричной антиклинальной складке в северозападной части Ухта-Ижемского вала на северо-восточном склоне Тиманской антеклизы. Присводовая часть антиклинали осложнена Ярегским. Южно-Ярегским, Лыаельским и Вежавожским локальными поднятиями. ПростиПромышленно нефтеносны отложения верхнего и среднего девона. ПростиКоллекторы трещинно-поровые, представлены кварцевыми песчаниками (толщина 26 м). Залежь пластовая сводовая на глубине 140–200 м, многочисленными дизъюнктивными нарушениями разбита на блоки. Нефть тяжелая, высокосмолистая, вязкая, парафинистая; плотность от 0,932 до 0,959 (г/см3). На 1.1.1997 г. добыто 17,7 млн. т нефти. В 1941 г. геолог В.А. Калюжный в песчаниках III-го пласта установил промышленное содержание титановых минералов. На Яреге строится горнообогатительный комплекс для добычи и химического обогащения кремнистотитанового концентрата. Месторождение разрабатывают ЗАО «Битран» и ООО «Комититан».

Дополнительные сведения по месторождению Ярегское

Опытная эксплуатация месторождения с 1935 г. До 1945 г. месторождение разрабатывалось обычным скважинным методом по треугольной сетке с расстояниями между скважинами 75–100 м. добыто 38.5 тыс. т нефти, нефтеотдача не превышала 2%. С конца 1939 г. разработка велась шахтным способом (3 шахты). Из рабочей галереи в надпластовом горизонте, расположенном на 20–30 м выше кровли продуктивного пласта, разбуривали залежь по плотной сетке скважин через 15–25 м. С 1954 г. отработка шахтных полей велась по уклонно-скважинной системе из рабочей галереи внутри продуктивного пласта. Длина скважин 40–280 м. расстояние между забоями 15–20 м. К 1972 г. добыто 7,4 млн. т. нефтеотдача менее 4%. С 1972 г. начата термошахтная эксплуатация с закачкой в продуктивные пласты теплоносителя через нагнетательные скважины из надпластовой галереи. Нефть отбиралась эксплуатационными скважинами из рабочей галереи продуктивного пласта. Кроме нефти в среднедевонских песчаниках обнаружены повышенные концентрации лейкоксена.

Сводный стратиграфический разрез Ярегского нефтяного месторождения

Карта нефтегазоносности Тимано-Печорской провинции


Существующие технологии разработки месторождений высоковязких нефтей и природных битумов

Существуют различные способы разработки залежей тяжелых нефтей и природных битумов, которые различаются технологическими и экономическими характеристиками. Применимость той или иной технологии разработки обуславливается геологическим строением и условиями залегания пластов, физико-химическими свойствами пластового флюида, состоянием и запасами углеводородного сырья, климатогеографическими условиями и т.д. Условно их можно подразделить на три, неравноценные по объему внедрения, группы: 1 – карьерный и шахтный способы разработки; 2 – так называемые «холодные» способы добычи; 3 – тепловые методы добычи.

Карьерный и шахтный способы разработки

Залежи природных битумов разрабатывают открытыми (карьерными или рудничными) и подземными (шахтными, шахтно-скважинными) методами.

Твердые битуминозные сланцы могут залегать почти у поверхности земли, однако глубина залегания битуминозных пород может достигать и до 750 м (месторождение Пис Ривер, Канада), а порой и более того. Как правило, глубина разработки не превышает 150–200 м., а зачастую разработка ведется и на меньших глубинах.

Добыча нефти карьерным методом состоит из двух основных операций: выемки нефтеносной породы и транспортировки на обогатительную фабрику с последующим извлечением нефти. При данном методе разработки капитальные и эксплуатационные расходы на месторождении относительно невелики, и после проведения дополнительных работ по получению из породы углеводородов, обеспечивается высокий коэффициент нефтеотдачи: от 65 до 85%. Для выемки породы применяют землеройные машины-экскаваторы, скреперы, бульдозеры и т.п.

Наиболее крупным в мире является месторождение битуминозных песков Атабаска в Канаде (провинция Альберта). Мощность песков до 90 м, глубина залегания до 600 м. Пески кварцевые с пористостью до 30%. Битумонасыщенность от 2 до 18%, в среднем 8%. Пески насыщены нефтью и содержат (%): силикатные смолы – 24%, асфальтены – 19%, серу – 5%, азот – 10%, кокс – 19%. Плотность битумов – 1020 кг/м 3 , запасы – 128 млрд. т. Добыча битуминозных песков ведется роторными экскаваторами (Рис. 1). Затем песчано-битумная масса подается транспортером на измельчительный пункт и экстракционный завод, расположенные около карьера. Обработка нефтеносной породы, т.е. отмыв нефти от частиц породы производится различными способами: аэрированной холодной водой, горячей водой, паром, химическими реагентами и даже методом пиролиза. После экстракции битума, отстоя и центрифугирования он поступает на нефтеперерабатывающий завод (НПЗ). На установках термоконтактного крекинга НПЗ после предварительной гидроочистки с получением товарной серы выделяют фракции: бензиновые, дизельные, котельного топлива и металлосодержащий кокс. Из двух кубометров песков получают 1 баррель нефти (159 кг). В сутки вырабатывают 8000 м 3 нефти, 350 т серы, 260 т кокса и газ. Из отходов извлекают титановые минералы и циркон (до 690 т в год). На юго-запад от Атабаски находятся месторождения Колд-Лейк (14 млрд. м 3), Пис-Ривер (12 млрд. м 3), Уобаска (14 млрд. м 3).

Шахтная разработка может вестись в двух модификациях: очистная шахтная – с подъемом углеводородонасыщенной породы на поверхность и шахтно-скважинная – с проводкой горных выработок в надпластовых породах и бурением из них кустов вертикальных и наклонных скважин на продуктивный пласт для сбора нефти уже в горных выработках. Очистной-шахтный способ.


Рис. 1 Роторный экскаватор Рис. 2 Шахтный метод разработки

(Рис. 2) применим лишь до глубин 200 метров, зато имеет более высокий коэффициент нефтеотдачи (до 45%) по сравнению со скважинными методами. Большой объем проходки по пустым породам снижает рентабельность метода, который в настоящее время экономически эффективен только при наличии в породе (кроме углеводородов) ещё и редких металлов. Шахтно-скважинный метод разработки применим на более значительных глубинах (до 400 метров), но имеет низкий коэффициент нефтеотдачи и требует большого количества бурения по пустым породам. Принцип шахтно-скважинного метода таков. Если горные выработки находятся ниже продуктивного нефтеносного горизонта, то из них бурятся небольшие дренажные скважины (причем бурение обычно 10–12 скважин), по которым нефть идет самотеком под действием гравитационного фактора и попадает в специальные канавки, находящиеся на дне горной выработки и имеющие небольшой уклон для стока в нефтехранилище. В случае, когда горные выработки находятся выше продуктивного горизонта, также бурят кустовые скважины, но нефть извлекается насосами. Вязкие нефти транспортируются по канавкам при помощи воды открытым способом ввиду почти полного отсутствия газообразных компонентов. Далее из нефтехранилища эта нефть подается на поверхность насосами.

Для повышения темпов добычи тяжелых нефтей и природных битумов и обеспечения полноты выработки запасов в шахтно-скважинном способе разработки используют паротепловое воздействие на пласт. Так называемый термошахтный метод применим на глубинах до 800 метров, имеет высокий коэффициент нефтеизвлечения (до 50%), однако более сложен в управлении, чем шахтный и шахтно-скважинный методы. Наиболее известным примером шахтно-скважинной разработки залежей тяжелых нефтей является разработка Ярегского месторождения.

Разработка Ярегского месторождения подразделена на три этапа: 1) опытный при эксплуатации скважин с поверхности, 2) шахтный способ разработки, 3) шахтный способ с применением теплового воздействия на пласт.

Эксплуатация скважин с поверхности привела к уровню нефтедобычи всего в 2%. Именно тогда возникла идея бурения шахтных скважин, оканчивающихся в системе галерей, расположенных в вышележащем горизонте.

Разработка шахтным способом осуществлялась по двум системам (Рис. 3): 1) ухтинской, при которой залежь дренировали весьма плотной сеткой вертикальных или слегка наклонных скважин (глубиной до 50 м), пробуренных из горной выработки вышележащего туффитового горизонта, находящейся выше продуктивного пласта на 25 метров и 2) уклонно-скважинной – с расположением галерей в верхней части пласта и разбуриванием шестигранников (площадью 8–12 га) в подстилающем горизонте пологими скважинами длиной до 200 м., которые отходят от них как спицы колеса от оси.


Рис. 3 Схема разработки шахтным способом Ярегского месторождения, включающая в себя ухтинскую и уклонно-скважинную системы

1 – система наклонных скважин; 2 – подземная часть скважины; 3 – насосная станция; 4 – подземная галерея для аэрации; 5 – основная скважина; 6 – скважина для аэрации; 7 – электрическое оборудование; 8 – хранение взрывчатых веществ; 9 – подземная галерея; 10 – камеры, в которые выходят устья скважин; 11 – система сгруппированных скважин

Такая двойная система скважин позволила увеличить коэффициент нефтеотдачи до 6%. Для его повышения было решено прибегнуть к паротепловому воздействию. Необходимо было найти «прорывную» технологию, обеспечивающую решение проблем. Такая технология была предложена, опробована и после проведения большого объема опытных работ по тепловому воздействию на продуктивный пласт в условиях шахтной разработки, с 1972 года началось широкомасштабное внедрение «двухгоризонтной системы» термошахтного способа разработки (Рис. 4) на всех нефтешахтах.


Рис. 4 Двухгоризонтная система разработки

В настоящее время продолжается поиск и совершенствование технологий добычи нефти на месторождении. Так с 1999 г., на нефтешахтах проводились опытно-промышленные работы по испытанию подземно-поверхностной технологии (рис. 5). За период испытания новой технологии получен достаточный материал для проведения анализа разработки и подтверждена методика расчета технологических показателей разработки по предложенному способу.

Данный метод позволил увеличить годовой объём добычи нефти в настоящее время до 690 тыс. тонн без существенной реконструкции мощностей, но с серьёзными отступлениями и не выполнением ОТМ, обеспечивающих заявленные преимущества данного способа, по отношению к существующим. (двухгоризонтная, одногоризонтная, панельная системы) и ту эффективность, ради которой эта технология внедряется.

В тот же период были начаты опытно-промышленные работы с применением поверхностных технологий, предложенной Л.М. Рузиным, на площадях ранее отработанных по уклонно-скваженной системе, шахтным способом на естественном режиме истощения. Технология предусматривала циклическую закачку пара (пароциклическую обработку) с переводом скважин в конце цикла закачки в режим эксплуатации. Опытные работы велись в границах шахтного поля 2 бис – ОПУ-99, на третий год разработки этого участка появились положительные контуры эффективности этой технологии, По предложениям специалистов института «РосНИПИтермнефть», руководитель Джалалов К.Э., в ходе ОПР в технологию вносятся корректировки, связанные с переводом контурного ряда скважин, после 3-й пароциклической обработки в режим постоянного нагнетания, то есть сочетание пароциклики с площадным вытеснением. К сожалению, «политические» мотивы не позволили продолжить ОПР и получить реальные результаты.

Начиная с 2004 года на одном их участков месторождения осуществляется адаптация к условиям Ярегского месторождения канадского способа разработки – термо-гравитационного дренирования, сущность которого заключается в разработке нефтяной залежи горизонтальными скважинами с поверхности.

Эффективность любой системы разработки определяется, безусловно, экономическими показателями – затратами на добычу нефти, темпами отбора и коэффициентом извлечения нефти (КИН).

«Холодные» способы добычи

К современным «холодным» методам добычи тяжелой нефти, в первую очередь, может быть отнесен метод «CHOPS» (рис. 6), предполагающий добычу нефти вместе с песком за счет осознанного разрушения слабосцементированного коллектора и создания в пласте соответствующих условий для течения смеси нефти и песка (месторождение Ллойдминстер, Канада). Применение метода CHOPS не требует больших инвестиций на обустройство и обеспечивает незначительность эксплуатационных расходов, однако коэффициент нефтеотдачи в этом случае как правило не превышает 10%. При холодной добыче успешно используется специализированное насосное оборудование (например, установки винтовых насосов), с помощью которого производится откачка специально созданной смеси пластового флюида и песка. Добыча песка приводит к возникновению длинных каналов, или «червоточин», обладающих высокой проницаемостью. Опыт показывает, что некоторые каналы могут отходить в стороны от эксплуатационной скважины на расстояние до 200 м. Сочетание пенистости нефти с высокопроницаемыми каналами обуславливает высокие коэффициенты извлечения и высокие дебиты, наблюдаемые у большинства нефтеносных пластов месторождения Ллойдминстер. Несмотря на коммерческий успех технологии холодной добычи, существует ряд признаков, по которым можно судить о вероятном достижении предела ее возможностей. По имеющимся оценкам, объем добываемой в настоящее время нефти составляет 36 500 м 3 /сут (230 000 барр./сут), при этом согласно прогнозам в следующем десятилетии произойдет снижение добываемых объемов на 50%. Причиной такого снижения добычи являются следующие факторы:

» отсутствие новых месторождений, пригодных для разработки с применением методики холодной добычи;

» обводнение скважин за счет притока воды по сети каналов;

» снижение пластового давления и энергии пластов;

» низкий приток жидкости и высокий газовый фактор;

» невозможность эксплуатации скважин дольше 7–8 лет в силу вышеуказанных причин.


Рис. 6 Метод разработки «CHOPS»

В числе «холодных» способов добычи тяжелых нефтей и битумов с использованием растворителей следует указать так называемый VAPEX метод (рис. 7) – закачка растворителя в пласт в режиме гравитационного дренажа. Этот способ воздействия предполагает использование пары горизонтальных скважин. За счет закачки растворителя в верхнюю из них, создается камера растворитель (углеводородные растворители, в том числе этан или пропан).Нефть разжижается за счет диффузии в нее растворителя и стекает по границам камеры к добывающей скважине под действием гравитационных сил.Коэффициент извлечения нефти этим методом доходит до 60%, однако темпы добычи чрезвычайно низки.

Таким образом, «холодные» методы разработки залежей тяжелой нефти не лишены ряда существенных недостатков. В их числе ограничения по максимальным значениям вязкости нефти и низкие темпы разработки. Поэтому, подавляющее число активно осуществляемых проектов разработки месторождений тяжелой нефти и битумов связано с тепловыми методами воздействия на пласты.


Рис. 7 Метод разработки «VAPEX».

Тепловые методы разработки

Тепловые методы разработки нефтяных месторождений делятся на два принципиально различных вида. Первый, основанный на внутрипластовых процессах горения, создаваемых путем инициирования горения коксовых остатков в призабойной зоне нагнетательных скважин (с применением забойных нагревательных устройств – обычно типа ТЭНов) с последующим перемещением фронта горения путём нагнетания воздуха (сухое горение) или воздуха и воды (влажное горение). Второй, наиболее широко применяемый в России и за рубежом, основанный на нагнетании (с поверхности) теплоносителей в нефтяные пласты.

Методы нагнетания теплоносителя в нефтяные пласты имеют две принципиальные разновидности технологии. Первая – основана на вытеснении нефти теплоносителем и его оторочками. Такая разновидность получила в зависимости от вида используемого теплоносителя наименования: паротеплового воздействия на пласт (ПТВ) и воздействия горячей водой (ВГВ) Вторая – на паротепловой обработке призабойной зоны добывающих скважин (ПТОС). В этом случае в качестве теплоносителя используется насыщенный водяной пар.

Внутрипластовое горение (рис. 8). Сущность процесса сводится к образованию и перемещению по пласту высокотемпературной зоны сравнительно небольших размеров, в которой тепло генерируется в результате экзотермических окислительных реакций между частью содержащейся в пласте нефти и кислородом нагнетаемого в пласт воздуха.

Рис. 8 Внутрипластовое горение

В качестве топлива для горения расходуется часть нефти, остающаяся в пласте после вытеснения ее газами горения, водяным паром, водой, испарившимися фракциями нефти впереди фронта горения и претерпевающая изменения вследствие дистилляции, крекинга и других сложных физико-химических процессов. Выгорает 5–25% запасов нефти. Исследованиями установлено, что с увеличением плотности и вязкости нефти расход сгорающего топлива увеличивается, а с увеличением проницаемости уменьшается.

Процесс внутрипластового горения имеет следующие разновидности по направлению движения окислителя:

– прямоточный процесс, когда движение зоны горения и окислителя совпадают;

– противоточный процесс, когда зона горения движется навстречу потоку окислителя.

Технология процесса заключается в следующем. Сначала компрессорами закачивают воздух. Если в течение первых месяцев не обнаруживается признаков экзотермических реакций (по данным анализов газа и температуры в добывающих скважинах), то приступают к инициированию горения. Его можно осуществить одним из методов: электрическим забойным нагревателем, который опускается в скважину на кабеле и обдувается воздухом; забойной газовой горелкой, опускаемой в скважину на двух концентричных рядах труб (для раздельной подачи топлива и воздуха); использование теплоты химических окислительных реакций определенных веществ (пирофоров); подачей катализаторов окисления нефти.

После создания фронта горения в призабойной зоне нагнетательной скважины дальше его поддерживают и перемещают по пласту закачкой воздуха, с постоянно возрастающим его расходом. После того, как процесс горения стабилизировался, в пласте по направлению от нагнетательной скважины к добывающим можно выделить несколько характерных зон.

Между забоем нагнетательной скважины и фронтом горения размещается выжженная зона 1. При нормальном течении процесса в ней остается сухая, свободная от каких-либо примесей порода пласта. У кровли и подошвы пласта в данной зоне после прохождения фронта горения может оставаться нефтенасыщенность 2, так как в связи с потерями тепла в кровлю и подошву температура в этих частях может оказаться недостаточной для воспламенения топлива. Исследованиями установлено, что зона фронта горения 3 имеет сравнительно малые поперечные размеры и не доходит до кровли и подошвы пласта. Непосредственно перед фронтом горения в поровом пространстве породы движется зона 4 коксообразования и испарения сравнительно легких фракций нефти и связанной воды. Нагрев этой области пласта осуществляется за счет теплопроводности и конвективного переноса тепла парами воды, нефти и газообразными продуктами горения. Температура в этой зоне падает от температуры горения до температуры кипения воды (в смеси с нефтью) при пластовом давлении.

Перед зоной испарения движется зона 5 конденсации паров воды и нефти. Температура зоны равна температуре кипения смеси воды и нефти. Впереди этой зоны движется зона 6 жидкого горячего конденсата нефти и воды. Температура в зоне 6 снижается от температуры конденсации до пластовой. Впереди зоны конденсата нефти и воды может образоваться «нефтяной вал» зона 7 (зона повышенной нефтенасыщенности) при температуре равной пластовой. Последняя зона 8 – зона нефти с начальной нефтенасыщенностью и пластовой температурой, через которую фильтруются оставшиеся газообразные продукты горения.

Эффективная реализация процесса внутрипластового горения зависит от правильного подбора нефтяной залежи и всестороннего обоснования признаков, влияющих на успешное и экономичное применение такого способа.

Для внутрипластового горения наиболее благоприятны продуктивные пласты толщиной 3–25 м. Остаточная нефтенасыщенность должна составлять 50–60%, а первоначальная обводненность не более 40%. Вязкость и плотность нефти могут варьироваться в широких пределах. Пористость пласта существенно влияет на скорость продвижения фронта горения и потребное давление для окислителя. Проницаемость более 0,1 мкм 2 .

Влажное внутрипластовое горение. Процесс влажного внутрипластового горения заключается в том, что в пласт вместе с воздухом закачивается в определенном количестве вода, которая, соприкасаясь с нагретой движущимся фронтом горения породой, испаряется. Увлекаемый потоком газа пар переносит теплоту в область впереди фронта горения, где вследствие этого развиваются обширные зоны прогрева, выраженные в основном зонами насыщенного пара и сконденсированной горячей воды.

Смысл применения влажного внутрипластового горения заключается в том, что добавление к нагнетаемому воздуху агента с более высокой теплоемкостью – воды, улучшает теплоперенос в пласте, что способствует перемещению теплоты из задней области в переднюю относительно фронта горения. Использование основной массы теплоты в области позади фронта горения, т.е. приближение генерированной в пласте теплоты к фронту вытеснения нефти, существенно повышает эффективность процесса теплопереноса и извлечения нефти.

Паротепловые обработки призабойных зон скважин и закачка в пласт теплоносителя. Являются наиболее широко применяемыми методами добычи тяжелых нефтей и природных битумов.

Процесс паротепловой обработки (ПТОС) призабойной зоны скважины заключается в периодической закачке пара через НКТ в добывающие скважины для разогрева призабойной зоны пласта и снижения в ней вязкости нефти, т.е. для повышения продуктивности скважин. Цикл (нагнетание пара, выдержка, добыча) повторяется несколько раз на протяжении стадии разработки месторождения. Такой метод называется циклическим.

Основные достоинства – высокий дебит после обработки, меньшие потери тепла по стволу скважины в кровлю и подошву пласта, температура обсадной колонны при нагнетании пара ниже, чем при других вариантах.

Недостатки – падение дебита при последующих циклах, неполное извлечение нефти из пласта, ограниченность зоны прогрева пласта и др.

Существует циркуляционный вариант, при котором пар нагнетают по кольцевому пространству к забою, оборудованному пакером, а через НКТ откачивают конденсат вместе с нефтью. Для этого варианта необходим мощный, однородный пласт, хорошо проницаемый в вертикальном направлении.

Преимущество: эксплуатация скважины не прекращается.

Недостатки: большие потери тепла, высокая температура обсадной колонны и необходимость её защиты от деформации, ограниченность прогрева пласта, необходимость создания специальных пакеров и скважинных насосов для работы при высоких температурах.

Площадной вариант – пар подают в нагнетательную скважину, а нефть,

вытесняемая из пласта оторочкой горячего пароконденсата и пара, добывается

из соседних добывающих. Идет процесс непрерывного фронтального вытеснения нефти из пласта.

Преимущество: высокая нефтеотдача пласта в результате прогрева большой зоны.

Недостатки: затрата значительного количества тепловой энергии, в результате чего метод иногда бывает экономически невыгоден.

Из-за того, что паротепловому воздействию подвергается только призабойная зона скважины, коэффициент нефтеизвлечения для такого метода разработки остается низким (15–20%). Еще одним из недостатков метода является высокая энергоемкость процесса и увеличение объема попутного газа. Поэтому, в основном ПТОС применяются как дополнительное воздействие на призабойную зону скважины при осуществлении процесса вытеснения нефти теплоносителем из пласта, т.е. нагнетания теплоносителя с продвижением теплового фронта вглубь пласта.

Увеличение нефтеотдачи пласта при закачке в него теплоносителя достигается за счет снижения вязкости нефти под воздействием тепла, что способствует улучшению охвата пласта и повышает коэффициент вытеснения. В качестве рабочих агентов могут использоваться горячая вода, пар, горячий полимерный раствор и т.д.

Закачка горячей воды. В определенных физико-геологических условиях, в особенности с ростом глубин залегания пластов и повышением давления нагнетания теплоносителей, технологически и экономически целесообразно нагнетать в пласт высокотемпературную воду (до 200 °С), не доводя ее до кипения, так как при высоких давлениях (25 МПа) энтальпия пара, горячей воды или пароводяной смеси практически не различается. После предварительного разогрева призабойной зоны пласта и вытеснения нефти на расстояние нескольких десятков метров от скважины можно переходить на закачку холодной воды. Размеры зон прогрева и последующего охлаждения определяются термогидродинамическими расчетами в зависимости от темпа нагнетания горячей и холодной воды, температур пласта и теплоносителя, а также теплофизических характеристик пласта и теплоносителя. Доказана высокая эффективность от нагнетания высокотемпературной горячей воды при различных геолого-физичских условиях.

Вытеснение нефти паром. На основании лабораторных и промысловых опытов установлено, что наиболее эффективным рабочим агентом, используемым для увеличения нефтеотдачи, является насыщенный водяной пар высоких давлений (8–15 МПа). Объем пара может быть в 25–40 раз больше, чем объем воды. Пар в состоянии вытеснить почти до 90% нефти из пористой среды.

Увеличение нефтеотдачи пласта в процессе нагнетания в него пара достигается за счет снижения вязкости нефти под воздействием температуры, что способствует улучшению охвата пласта процессом, а также за счет расширения нефти, перегонки ее с паром и экстрагирования растворителем, что повышает коэффициент вытеснения. Основную долю эффекта вытеснения нефти (40–50%) обеспечивает снижение вязкости нефти, затем дистилляция нефти и изменение подвижностей (18–20%) и в меньшей степени – расширение и смачиваемость пласта.

С целью недопущения рассеивания тепла в окружающие породы, для воздействия паром выбирают нефтяные пласты с достаточно большой толщиной (15 м и более).

К недостаткам метода вытеснения нефти паром следует прежде всего отнести необходимость применения высококачественной чистой воды для парогенераторов, чтобы получить пар с насыщенностью 80% и теплоемкостью 5000 кДж/кг. В воде, питающей парогенератор, должно содержаться менее 0,005 мг/л твердых взвешенных частиц и полностью должны отсутствовать органические вещества (нефть, соли), растворенный газ (особенно кислород), а также катионы магния и кальция (нулевая жесткость).

Обработка воды химическими реагентами, умягчение, удаление газов, обессоливание требуют больших расходов, иногда достигающих 30–35% от общих расходов на производство пара.

Вытеснение нефти паром из песчаных пластов после прогрева и подхода фронта пара к добывающим скважинам сопровождается выносом песка, а из глинистых пластов – снижением их проницаемости, что создает дополнительные трудности.

Отношение подвижностей пара и нефти хуже, чем отношение подвижностей воды и нефти, поэтому охват пласта вытеснением паром ниже, чем при заводнении, особенно в случае вязкостей нефти более 800 – 1000 мПа·с. Повышение охвата пластов процессом вытеснения нефти паром – одна из основных проблем, требующих решения. Другая, наиболее сложная проблема при применении пара – сокращение потерь теплоты через обсадные колонны нагнетательных скважин, которые в обычных условиях достигают 3–4% на каждые 100 м глубины скважины.

При больших глубинах скважин (1000 м и более) потери теплоты в нагнетательных скважинах могут достигать 35 – 45% и более от поданной на устье скважины, что сильно снижает экономическую эффективность процесса. Термоизоляция паронагнетательных труб особенно в глубоких скважинах снижает эти потери, но при этом встречаются технические трудности. Цементация колонны должна осуществляться до самого устья скважины. Цемент должен быть расширяющимся со специальными добавками (до 30 – 60% кремнезема), термостойким.

Основное ограничение на применение метода – глубина не более 800–1000 м.

Несмотря на накопленный опыт в области тепловых методов воздействия на пласты, для отечественной нефтяной промышленности представляется крайне необходимым поиск и создание новых более совершенных технологий разработки залежи тяжелый нефтей и битумов. Это обусловлено как структурой «нетрадиционных» запасов нефти, так и необходимостью более полной выработки запасов углеводородов при достаточной высокой эффективности их добычи. Как уже отмечалось выше, более 2/3 извлекаемых запасов «нетрадиционных» углеводородов в России приходится на битумы, а не на тяжелую нефть. Геологические ресурсы природных битумов на порядок превышают извлекаемые запасы тяжелой нефти. Для разработки таких месторождений с достижением приемлемыми значениями коэффициентов извлечения необходимы новейшие тепловые методы, превосходящие по эффективности уже традиционные технологии теплового воздействия.

Совершенствование методов разработки высоковязких нефтей и природных битумов

высоковязкий нефть разработка месторождение

Для исключения убыточности и нерентабельности разработки месторождений высоковязких нефтей и природных битумов в России и за рубежом ведутся работы, направленные на совершенствование и создание технологий повышения нефтеотдачи, позволяющих разрабатывать вышеуказанные месторождения с наибольшей экономической эффективностью.

В сфере разработки месторождений трудноизвлекаемого сырья, необходимо отметить деятельность таких компаний как «Удмуртнефть», «Татнефть», «РИТЭК».

После создания в 1973 г. в Удмуртии ПО «Удмуртнефть» первые попытки разработки основных месторождений с применением традиционных способов – редкими сетками скважин с заводнением – не дали положительных результатов. Скважины имели низкие дебиты, наблюдались быстрые прорывы закачиваемой воды по наиболее проницаемым пластам и пропласткам, не достигались проектные отборы и величины текущей нефтеотдачи, резко снижалась рентабельность освоения месторождений. Из-за применения в расчетах упрощенных гидродинамических моделей без учета осложняющих факторов оказались существенно завышенными проектные технико-экономические показатели разработки и особенно значения конечной нефтеотдачи, которые принимались проектами в пределах 34–45%.

Поэтому уже в 1975 г. были начаты масштабные комплексные научные исследования по созданию принципиально новых технологий повышения нефтеотдачи. Были организованы целенаправленные теоретические и экспериментальные исследования особенностей механизма нефтеотдачи в сложных трещинно-порово-кавернозных коллекторах с нефтями повышенной и высокой вязкости.

Накопленный мировой опыт разработки залежей с высоковязкими нефтями, содержащимися главным образом в терригенных коллекторах, доказывал эффективность использования тепловых методов (воздействие горячей водой – ВГВ и паротепловое воздействие – ПТВ). Однако для карбонатных коллекторов с тяжелыми вязкими нефтями подобных разработок не было. В Удмуртии разработка технологий освоения трудноизвлекаемых запасов в карбонатных коллекторах велась в двух направлениях: 1) поиск и создание технологий физико-химического воздействия на пласт, 2) тепловое воздействие на пласт.

Итогом целенаправленных научно-практических исследований стало создание принципиально новых технологий и способов рациональной разработки и повышения нефтеотдачи для решения проблемы эксплуатации сложнопостроенных месторождений с карбонатными коллекторами. Не имеющие аналогов в мировой практике термополимерные и термоциклические технологии воздействия на пласт научно обоснованы на уровне изобретений и патентов, испытаны и широко внедрены в производство. Если традиционно применяемые технологии заводнения в карбонатных коллекторах с нефтями повышенной и высокой вязкости могли обеспечить конечную нефтеотдачу не более 20–25%, то новые технологии позволяют довести нефтеотдачу до 40–45%.

Сущность нового подхода заключается в том, что при воздействии растворами полимера (полиакриламид концентрации 0,05–0,10%) удается существенно выравнивать профили приемистости в нагнетательных скважинах, а главное – значительно увеличивать коэффициент охвата неоднородного коллектора рабочим агентом. За счет выравнивания соотношения вязкостей вытесняемой и вытесняющей фаз происходит гашение вязкостной неустойчивости фронтов вытеснения – неконтролируемых прорывов воды к добывающим скважинам.

Исследования и последующий промышленный опыт показали, что технологии полимерного воздействия повышают в 1,5–1,7 раза конечную текущую нефтеотдачу по сравнению с таковой от воздействия необработанной водой, т.е. при заводнении существенно ниже динамика обводнения добывающих скважин и выше их рабочие дебиты. Разработанная новая технология термополимерного воздействия (ТПВ) предусматривает закачку в пласт нагретого до 80–90 °С полимерного раствора той же концентрации, что и холодный раствор.

Существенное улучшение механизма извлечения нефти из пластов при ТПВ заключается в том, что закачиваемый горячий полимерный раствор после прохождения по пласту снижает свою температуру до пластовой, тем самым увеличивая свою вязкость на фронте вытеснения, что приводит к его выравниванию и увеличению коэффициента охвата пласта. Причем этот процесс в пласте оказывается саморегулируемым, что особенно важно в трещиноватых коллекторах. На Мишкинском и Лиственском месторождении месторождениях дополнительная добыча нефти за счет технологии ТПВ превысила 560 тыс. т. Так, 1 т сухого полимера позволяет дополнительно добывать 263 т нефти.

В целях совершенствования технологии ТПВ была разработана новая технология термополимерного воздействия с добавлением полиэлектролита (ТПВПЭ), способствующего замедлению возможной деструкции полимера и более глубокому проникновению его в пласт. Кроме того, используя данную технологию, удалось существенно сократить расход дорогостоящего полимера (на 15–20%), снизив тем самым себестоимость добытой нефти. Дальнейшее совершенствование технологии ТПВ шло по пути значительного снижения энергоемкости и ресурсосбережения, что привело к разработке технологии циклического внутрипластового полимерно-термического воздействия (ЦВПТВ). Здесь закачка теплоносителя и раствора полимера осуществляется уже в несколько циклов, после чего предусматривается закачка обычной воды. Цикличность процесса ЦВПТВ приводит к увеличению охвата пласта рабочим агентом, интенсификации капиллярных и термоупругих эффектов и сокращению расхода химреагента. Реализация проекта началась на Ижевском месторождении, что позволило дополнительно добыть более 400 тыс. т нефти и достичь конечной нефтеотдачи 35,4 вместо 11,5% при существующем ныне режиме истощения. Применение технологии ЦВПТВ на Лиственском месторождении даст возможность получить дополнительно 2,3 млн. т нефти, увеличить извлечение нефти на 8% в сравнении с таковым при холодном полимерном воздействии (ХПВ). В качестве теплоносителей для нагнетания в пласт с целью повышения нефтеотдачи в настоящее время используется перегретая горячая вода (t=260 °C).

Термические методы на месторождениях высоковязких нефтей обеспечивают кратное увеличение нефтеотдачи относительно таковой при естественных режимах разработки и методах заводнения. В механизме нефтеизвлечения выделяются три основных фактора:

– улучшение отношения подвижностей нефти и воды;

– тепловое расширение пластовой системы;

– улучшение проявления молекулярно-поверхностных сил в пласте.

Внедрение технологий термического воздействия было начато на Гремихинском месторождении. Основной объект разработки – залежь пласта А4 башкирского яруса среднего карбона, со сложными трещинно-порово-кавернозными крайне неоднородными коллекторами. Режим пласта упруговодонапорный. Было ясно, что эффективность разработки месторождения традиционными способами будет низкой. Нефтеотдача, на естественном режиме составляет не более 10–12%. Поэтому в 1983 г. были начаты экспериментальные работы по нагнетанию в пласт теплоносителя: горячей воды с температурой на устье скважин 260 °С.

Однако эта технология весьма энергоемка, требует крупных материальных затрат, поэтому специалистами ОАО «Удмуртнефть» совместно с учеными ряда институтов проводились работы по созданию принципиально новых ресурсо и энергосберегающих технологий, позволяющих вывести заведомо нерентабельные запасы высоковязких нефтей Гремихинского месторождения в разряд прибыльных.

В результате созданы, запатентованы и внедрены в производство принципиально новые высокоэффективные технологии теплового воздействия: импульсно-дозированное тепловое воздействие (ИДТВ), импульсно-дозированное тепловое воздействие с паузой (ИДТВ(П), теплоциклическое воздействие на пласт (ТЦВП) и его модификации.

Сущность технологии ИДТВ заключается в многократном воздействии на матрицу попеременно и строго рассчитанными циклами «нагрев – охлаждение», что способствует более полному вытеснению нефти при поддержании в пласте так называемой «эффективной температуры». Это понятие положено в основу определения необходимых объемов теплоносителя и холодной воды для обеспечивания значительного сокращения энерго- и ресурсозатрат. Интенсификация добычи нефти в режиме ИДТВ определяется ускорением процесса охвата объекта разработки тепловым воздействием.

По сравнению с ПТВ и ВГВ циклический процесс позволяет использовать теплогенерирующие установки для большого числа нагнетательных скважин, так как в периоды нагнетания порции холодной воды теплоноситель нагнетается в другие скважины. При неоднократном повторе циклов смены температур, т.е. при термоциклическом воздействии на матрицу, величина нефтеотдачи достигает 37%, что на 9% выше, чем при заводнении.

В техническом исполнении ИДТВ особых дополнительных конструкций и установок не требует. Применяются стандартные паронагнетательные скважины, внутрискважинное устьевое и наземное оборудование.

В технологии ИДТВ(П) закачка вытесняющих агентов ведется не непрерывно, как в ИДТВ, а с кратковременными остановками (паузами) в периоды нагнетания порций холодной воды. Назначение пауз – периодическое создание в пласте перепадов давления с целью нарушения установившихся потоков флюидов и вовлечения в активную разработку низкопроницаемых зон. Продолжительность паузы принимается равной времени восстановления давления в пласте после остановки скважины. Технология ИДТВ(П), обладая всеми свойствами технологии ИДТВ, обеспечивает увеличение нефтеизвлечения до 40%.

Сущность технологии ТЦВП заключается в организации единого технологического процесса комплексного теплового воздействия на пласт через систему нагнетательных и добывающих скважин. Осуществление одного полного цикла ТЦВП включает: нагнетание теплоносителя в пласт одновременно через центральную нагнетательную и три добывающие скважины, расположенные через одну в 7-точечном элементе, при этом отбор жидкости ведут через оставшиеся три добывающие скважины. Затем происходит смена функции группы добывающих скважин – находящиеся под закачкой теплоносителя переводятся на режим отбора и наоборот; все добывающие скважины переводятся на режим отбора, закачку теплоносителя осуществляют через центральную нагнетательную скважину. Технология предусматривает осуществление трех-пяти таких циклов, что обеспечивает практически полный охват вытеснением всего площадного элемента. Циклический процесс приводит к периодической смене направлений фильтрационных потоков, что является сдерживающим фактором обводнения продукции добывающих скважин. Расчетная конечная нефтеотдача достигает 45%. Если рассматривать зону реагирования, то здесь доля нефти, добытой за счет термических методов, составляет 75%.

Экономическая эффективность от внедрения тепловых методов на Гремихинском месторождении составила около 525 млн р., в том числе по технологиям: ИДТВ – 211 млн р., ИДТВ(П) – 190 млн р., ТЦВП – 64 млн р.

Об эффективности технологий свидетельствует уровень текущей нефтеотдачи (42%) на опытных участках их применения, тогда как прогнозная конечная нефтеотдача при заводнении оценивается в пределах 20–25%.

Объемы дополнительно добытой нефти за счет новых технологий, достигнутые коэффициенты нефтеизвлечения в пределах опытных участков и на объектах в целом свидетельствуют о высокой эффективности внедряемых термических и термополимерных методов на месторождениях высоковязких нефтей Удмуртии. Расчеты себестоимости добычи нефти при внедрении новых технологий по сравнению с традиционными подходами убедительно доказывают их более высокую экономическую эффективность.

Практический опыт разработки Гремихинского, Мишкинского и Лиственского месторождений и расчеты себестоимости добычи нефти при достижении конечных значений нефтеизвлечения показали, что себестоимость добычи нефти при использовании созданных в ОАО «Удмуртнефть» физико-химических и термических методов повышения нефтеотдачи пластов ниже, чем при естественном режиме и заводнении. В результате стало возможным рентабельное применение новых технологий при существующих ценах на нефть.

Таким образом, новые технологии позволили устранить главное препятствие на пути применения тепловых методов при разработке месторождений вязких нефтей – большие затраты, поскольку традиционные тепловые методы по затратам примерно в 2 раза выше, чем при заводнении.

Несмотря на накопленный опыт в области тепловых методов воздействия на пласты, для отечественной нефтяной промышленности представляется крайне необходимым поиск и создание новых более совершенных технологий разработки залежи тяжелый нефтей и битумов. Это обусловлено как структурой «нетрадиционных» запасов нефти, так и необходимостью более полной выработки запасов углеводородов при достаточной высокой эффективности их добычи. Как уже отмечалось выше, более 2/3 извлекаемых запасов «нетрадиционных» углеводородов в России приходится на битумы, а не на тяжелую нефть. Геологические ресурсы природных битумов на порядок превышают извлекаемые запасы тяжелой нефти. Для разработки таких месторождений с достижением приемлемыми значениями коэффициентов извлечения необходимы новейшие тепловые методы, превосходящие по эффективности уже традиционные технологии паротеплового воздействия. Одним из таких методов может явиться парогравитационный дренаж (SAGD) (Рис. 9), который на сегодняшний день в мире зарекомендовал себя как очень эффективный способ добычи тяжелой нефти и природных битумов. В классическом описании эта технология требует бурения двух горизонтальных скважин, расположенных параллельно одна над другой, через нефтенасыщенные толщины вблизи подошвы пласта. Верхняя горизонтальная скважина используется для нагнетания пара в пласт и создания высокотемпературной паровой камеры.

Процесс парогравитационного воздействия начинается со стадии предпрогрева, в течение которой (несколько месяцев) производится циркуляции пара в обеих скважинах. При этом за счет кондуктивного переноса тепла осуществляется разогрев зоны пласта между добывающей и нагнетательной скважинами, снижается вязкость нефти в этой зоне и, тем самым, обеспечивается гидродинамическая связь между скважинами. На основной стадии добычи производится уже нагнетание пара в нагнетательную скважину.

Рис. 9 Схема установки для добычи битума в режиме парогравитационного дренажа. Условные обозначения: 1 – лебедка; 2 – устьевое оборудование; 3,4 – эксплуатационные колонны соответственно добывающей и нагнетательной скважин; 5 – сваб; 6 – канат.

Закачиваемый пар, из-за разницы плотностей, пробивается к верхней части продуктивного пласта, создавая увеличивающуюся в размерах паровую камеру. На поверхности раздела паровой камеры и холодных нефтенасыщенных толщин постоянно происходит процесс теплообмена, в результате которого пар конденсируется в воду и вместе с разогретой нефтью стекают вниз к добывающей скважине под действием силы тяжести. Рост паровой камеры вверх продолжается до тех пор, пока она не достигнет кровли пласта, а затем она начинает расширяться в стороны. При этом нефть всегда находится в контакте с высокотемпературной паровой камерой. Таким образом, потери тепла минимальны, что делает этот способ разработки выгодным с экономической точки зрения.

Для повышения добычи и снижения энергозатрат некоторые компании начинают комбинировать методы VAPEX и SAGD. Одним из решений является технология SAP (SolventAidedProcess), в которой объединены преимущества указанных методов. В процессе SAP небольшое количество углеводородного растворителя вводится в качестве добавки в пар, закачиваемый при применении технологии SAGD. В то время как пар является основным теплоносителем и снижает вязкость нефти, добавка растворителя способствует ее разжижению в еще большей степени. Хотя улучшение экономических показателей зависит от конкретной ситуации, анализ полученных результатов показывает экономическую выгоду перехода с процесса SAGD на SAP.

В Канаде под закачкой растворителя подразумевается закачка углеводородных газов (парафиновых растворителей), таких как метан, пропан, бутан и их смеси. Этот метод требует наличия поблизости источника углеводородных газов и высокотехнологичного оборудования для их закачки. В то время как, месторождения сверхвязких нефтей Республики Татарстан характеризуются малой глубиной залегания продуктивного пласта (менее 100 м) и низкими пластовыми давлениями. В таких условиях применение данных растворителей нецелесообразно. Наиболее подходящими растворителями для вытеснения сверхвязких нефтей, содержащихся в слабоцементированных песчаниках уфимского яруса, являются углеводородные жидкости (нефтяные растворители), вязкость которых меньше вязкости нефти.

В мае 2006 г. специалистами ОАО «Татнефть» начат уникальный проект по добыче сверхвязких нефтей на Ашальчинском месторождении с использованием технологии парогравитационного воздействия. Для повышения ее эффективности была проведена экспериментальная оценка использования нефтяных растворителей совместно с закачкой пара. С целью выбора подходящего растворителя для вытеснения сверхвязких нефтей Ашальчинского и Мордово-Кармальского месторождений исследованы физико-химические свойства следующих растворителей: миа-прома, кичуйского нестабильного бензина, абсорбента Н, девонской нефти, нефраса 120/200, смесового растворителя «МС-50», нефраса 130/150, нефраса 150/200, нефраса 150/300, стерлитамакского абсорбента, дистиллята, дизельного топлива, абсорбента А-2, печного топлива.

Установлено, что самой низкой растворяющей способностью обладает дистиллят, производимый на базе Азнакаевской НГДУ «Азнакаевскнефть» (количество растворенной нефти составляет 4,67%), а самой высокой – нефрас 150/300 (15,1%).

Установлено, что все исследованные нефтяные растворители, кроме дистиллята, применимы в технологиях паротеплового воздействия, так как они не осаждают асфальтосмолистые вещества из сверхвязкой нефти. Анализ результатов исследований свидетельствует о том, что все изученные нефтяные растворители ускоряют разрушение водонефтяных эмульсий, приготовленных на основе сверхвязкой нефти Ашальчинского и Мордово-Кармальского месторождений при температуре 95 и 20 °С. Полученные результаты позволяют рекомендовать для при – менения в технологиях VAPEX и SAP в Татарстане нефтяные растворители, такие как абсорбент и нефрас, которые полностью соответствуют требованиям, предъявляемым к растворителям, используемым совместно с тепловыми методами.

Интересна технология инновационного технико-технологического комплекса парогазового воздействия разработанная в ОАО «РИТЭК». Суть ее состоит в том, что в парогазогенераторной установке теплоноситель образуется непосредственно в призабойной зоне пласта (рис. 10). При генерации теплоносителя в призабойной зоне тепловые потери при транспортировке пара практически отсутствуют. Экономичность таких устройств по эффективности сжигания топлива примерно на 30%выше, чем у наземных установок.

В парогазогенераторе для генерации парогазовой смеси используются только жидкие компоненты: вода и монотопливо (система, в которой все необходимые для реакции компоненты содержатся в одном жидкостном потоке). Кроме того, при работе парогазогенератора в нефтяной пласт нагнетается не чистый пар, а его смесь с продуктами сгорания, так называемая парогазовая смесь. Парогаз оказывает на пласт комбинированное воздействие: тепловое и физико-химическое, так как в его состав входят, помимо водяного пара, углекислый газ и азот. Таким образом, в парогазогенераторах обеспечивается практически полное использование химической энергии топлива, отсутствуют выбросы отработанных газов в атмосферу, а тепловое воздействие на пласт дополняется физико-химическим.

В мае 2009 г. в скв. 249 Мельниковского месторождения в Республике Татарстан были начаты опытно-промысловые испытания парогазогенераторного комплекса на монотопливе, которые уже дали положительные результаты. Это завершающий этап разработки уникальной комплексной технологии, позволяющей осуществлять добычу высоковязкой нефти на больших глубинах. Данная технология и разработанный комплекс оборудования открывают большие возможности для добычи нетрадиционного сырья, в частности в Республике Татарстан, где сосредоточены значительные запасы высоковязкой нефти.


Рис. 10. Принципиальная схема установки парогазогенератора на монотопливе: 1– станция управления; 2– монотопливо; 3 – вода; 4– плунжерный насос

Заключение

Таким образом, запасы высоковязких нефтей и природных битумов гораздо больше запасов традиционной мало- и средневязкой нефти. Распространение месторождений трудноизвлекаемого сырья в мире достаточно широкое.

Наиболее активная деятельность по разработке месторождений тяжелых нефтей и природных битумов ведется в Канаде, США, России, Венесуэле.

В России также широка география тяжелых нефтей, но наибольшее их преобладание в европейской части страны. Не все российские нефтяные компании гонятся за трудноизвлекаемыми углеводородами с целью получения прибыли, т. к. разработка таких месторождений подчас бывает убыточной, несмотря на государственную поддержку. Однако, некоторые компании имеют приоритетным направлением разработку именно таких месторождений (н-р «Татнефть», «Удмуртнефть», «Коминефть»).

Высоковязкие нефти, а, в частности природные битумы, необходимо рассматривать как комплексное сырьё. Они содержат в своем составе такие ценные гетероорганические соединения, как нафтеновые кислоты, сульфокислоты, простые и сложные эфиры, такие уникальные компоненты, как металлопорфирины (связаны с ванадилом и никелем), которые могут служить источником уникальных катализаторов, сенсибилизаторов, органических полупроводников. Они используются в медицине, в биотехнологиях, в химических технологиях, в микроэлектронике, поэтому спрос на них существует в тех странах, где эти технологии интенсивно развиваются. До сих пор уникальные нефти используются в качестве печного топлива, т. к. их на НПЗ не принимают, что ведет не только к потере ценных компонентов, но и наносит существенный экологический ущерб.

Специалистами ВНИГРИ были изучены технологии разработки высоковязких нефтей и природных битумов и их модификации: внутрипластовое горение и паротепловое воздействие. Оказалось что при внутрипластовом горении мы не только теряем часть нефти, но и теряем ценные попутные компоненты (потери ванадия от 36 до 75%). При паротепловом методе воздействия потери ценных компонентов не превышали 10–15%.

Итак, развитие направления разработки высоковязких нефтей и природных битумов должно включать в себя следующие работы:

– изучение накопленного отечественного и зарубежного опыта по разработке месторождений высоковязких нефтей (ВВН) и природных битумов (ПБ);

– анализ и разработку рациональных методов добычи ВВН и ПБ и повышение нефтеотдачи для максимального извлечения всех полезных компонентов;

– создание технологий получения из ВВН И ПБ товарной нефти на промысле, соответствующей стандартам приемки в магистральный трубопровод;

– разработка технологий и создание нефтеперерабатывающих мощностей, рассчитанных на повышение глубины переработки ВВН и ПБ и степени извлечения попутных компонентов;

– решение специфических экологических проблем, связанных с добычей, транспортировкой и переработкой ВВН и ПБ.

Несмотря на то, что разработка высоковязких нефтей и природных битумов на сегодняшний день лидирующим направлением не является, рано или поздно она приобретет свое ведущее место.


Список литературы

1. Байбаков Н.К., Гарушев А.Р. Тепловые методы разработки нефтяных месторождений. – М.: Недра, 1988. – с. 343.

2. Билалова Г.А., Билалова Г.М. Применение новых технологий в добыче нефти. – Учебное пособие. – Волгоград: Издательский Дом «Ин-Фолио», 2009. – 272 с.

3. Бурже Ж.П., Сурио М., Комбарну М. Термические методы повышения нефтеотдачи пластов. – М.: Недра, 1988. – 424 с.

4. Кудинов В.И. Совершенствование тепловых методов разработки месторождений высоковязких нефтей. – М.: Нефть и газ. – 1996. – 284 с.

5. Николин И.В. МЕТОДЫ РАЗРАБОТКИ ТЯЖЕЛЫХ НЕФТЕЙ ПРИРОДНЫХ БИТУМОВ. Наука – фундамент решения технологических проблем развития России, 2007 г., №2

6. www.rogtecmagazine.com «ТЕХНОЛОГИИ ЦИКЛИЧЕСКОЙ ЗАКАЧКИ РАСТВОРИТЕЛЯ ДЛЯ ИЗВЛЕЧЕНИЯ ТЯЖЕЛОЙ НЕФТИ»

7. http://www.ogbus.ru Полищук Ю.М., Ященко И.Г. ВЫСОКОВЯЗКИЕ НЕФТИ: АНАЛИЗ ПРОСТРАНСТВЕННЫХ И ВРЕМЕННЫХ ИЗМЕНЕНИЙ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ Нефтегазовое дело, 2005

8. Евгения Данилова, к. х. н. Тяжелые нефти России The Chemical Journal Декабрь 2008

9. В.И. Кокорев (ОАО «РИТЭК») Инновационный подход к разработке месторождений с трудноизвлекаемыми запасами нефти нефтяное хозяйство 08.2009 г.

10. В.И. Кудинов (ОАО «Удмуртнефть»), В.А. Савельев, Т.И. Головина (УдмуртНИПИнефть) «Экономическая эффективность внедрения тепловых методов повышения нефтеотдачи на месторождениях ОАО «УДМУРТНЕФТЬ»»

11. www.ngtp.ruИскрицкая Н.И. «Экономическая эффективность инноваций ВНИГРИ при освоении месторождений высоковязких нефтей и природных битумов» Нефтегазовая геология. Теория и практика. 2006 (1)

РАЗРАБОТКА МЕСТОРОЖДЕНИЙ ВЫСОКОВЯЗКИХ НЕФТЕЙ

Достаточно высокие значения нефтеотдачи пласта при разработке месторождений высоковязких нефтей могут быть достигнуты лишь при реализации тепловых методов повышения нефтеотдачи.

Вместе с тем, учитывая значительные затраты при реализации МУН, в последнее время был разработан и ряд новых технологий холодной добычи нефти. Нами на практических занятиях будут рассмотрены все существующие на сегодня технологии добычи высоковязкой нефти

В рамках данной лекции остановимся на тепловых методах разработки высоковязких нефтей.

Тепловые методы повышения нефтеотдачи.

Для повышения КИН месторождения ВВН целесообразно повышение температуры пласта. Вода обладает свойством переносить гораздо большее количество тепла, чем любая другая жидкость, в том же агрегатном состоянии. При температуре, не слишком близкой к критической, сухой пар переносит гораздо большее количество теплоты чем вода (в 3,5 раза при 20 атм, в 1,8-при 150 атм).

При непрерывном нагнетании теплоносителя (система нагнетательная-добывающая скважины) не вся подводимая тепловая энергия расходуется на увеличение нефтеотдачи. Некоторая, достаточно заметная её часть теряется из-за тепловых потерь:

При течении теплоносителя по участку обсадной трубы скважины, проходящему через верхние слои грунта;

в кровлю и подошву нефтяного пласта непосредственно в ходе нагнетания в пласт;

при повышение температуры нефтяного коллектора.

Использование только одной скважины попеременно в качестве нагнетательной и эксплуатационной значительно снижает отрицательное влияние перечисленных факторов на тепловую эффективность данного метода позволяя лучше использовать подводимую к месторождению тепловую энергию. Такой метод теплового воздействия называется циклическим. Как и при непрерывном нагнетании, в этом процессе теплоносителем обычно служит водяной пар.

При термическом воздействии на нефтяной пласт с помощью теплоносителя по профилю температур или по водонефтенасыщенности можно выделить несколько зон, где действуют различные физические механизмы.

Вытеснение нефти нагретой водой

Нагнетаемая в пласт вода охлаждается при контакте с несущей породой и имеющимися в пласте жидкостями. При достаточно установившемся процессе различают две основные рабочие зоны, нумерацию которых принято начинать от начала течения в направлении его развития. Однако для лучшего понимания начнём их описание в обратном порядке, как показано на рисунке 1.

В зоне 2 нефть вытесняется водой, температура которой равна температуре пласта. Нефтенасыщенность в заданной точке снижается с течением времени и при определённых условиях может достигнуть величины остаточного насыщения, зависящей от температуры в зоне 2.

В каждой точке зоны 1 температура непрерывно растёт, что обычно приводит к снижению остаточной нефтенасыщенности. Кроме того, расширение породы-коллектора и заполняющей его жидкости приводит к снижение (при неизменном насыщении) массы нефти, содержащейся в порах. Если нефть содержит легколетучие углеводороды, они могут быть вытеснены при помощи последовательных процессов испарения и конденсации – в этом случае в сравнительно узкой зоне может существовать состояние насыщения газовой фазы углеводородом.

Вытеснение нефти насыщенным водяным паром

Различают 3 основные зоны, пронумерованные в направлении течения теплоносителя (рисунок 2).

Зона 1 – в начале зоны конденсации сосуществует три фазы: вода, смесь жидких углеводородов и газ. Температура близка к постоянной, медленно снижается при удалении от границы ввода пара в соответствии с зависимостью температуры насыщения от давления. Нефтенасыщенность также изменяется за счёт гидродинамического вытеснения нефти из этой зоны или вследствие испарения легколетучих компонентов.

Зона 2 (конденсация) – в этой зоне пары воды и углеводородные фракции конденсируются при их контакте с холодным коллектором. Локальные температуры коллектора и наполняющих его фракций сильно отличаются, поэтому, строго говоря здесь нельзя пользоваться понятием эффективной теплопроводности. Это локальное нарушение теплового равновесия было обнаружено при экспериментально исследовании вытеснения воды водяным паром. В ходе эксперимента наблюдался переход воды в пар, хотя локальная средняя температура, измеренная термопарой, была заметно ниже температуры насыщения при поддерживаемом в эксперименте давлении (рисунок 3). Эта средняя температура является промежуточной между температурами твёрдого пористого тела и заполняющих его флюидов

Зона 3 – процессы в этой зоне аналогичны процессам, происходящим при вытеснении горячей водой. Однако объем, занимаемый единицей массы пара, гораздо больше, чем объём единицы массы воды; а так как объем зоны 1 (зоны пара) в ходе вытеснения возрастает, скорость воды в зоне 3 в данном случае значительно выше, чем при нагнетании внутрь залежи непосредственном воды той же температуры и с тем же массовым расходом.

Пароциклическое воздействие на скважину

Этот метод, используемый иногда наравне с методом непрерывного вытеснения нефти, включает три последовательные фазы, образующие цикл, который может быть повторён (рисунок 4).

Фаза нагнетания – развитие процесса в этой фазе, пар нагнетают в область залегания нефтяного пласта, идентично развитию процесса вытеснения.

Фаза ожидания – скважина закрыта. Привнесённая тепловая энергия переходит в пласт, пар конденсируется, отдавая своё тепло коллектору и нефти, находящейся в зоне нагнетания.

Фаза извлечения нефти – уровень добычи нефти после откачки части сконденсировавшейся воды заметно превышает уровень её добычи до нагнетания пара. В этот период (в отличие от процесса непрерывного вытеснения нефти) все текучие вещества – сначала сконденсировавшаяся вода, а затем нефть – нагреваются по мере приближения к нефтяной скважине. Часть поступившего к месторождению тепла возвращается обратно. Эффективность процесса зависит от существования в этой зоне повышенной температуры, максимум который достигается в непосредственной близости от скважины, т.е. в области, где тепловые потери при нагнетании пара наиболее существенны.

Таким образом, при одинаковом давлении на забое скважины уровень добычи (вследствие снижения вязкости добываемой нефти) после пароциклического воздействия превышает уровень добычи до него.

Что касается других составляющих энергетического баланса, отметим полное преобразование механической энергии, подведённой к месторождению вместе с паром в процессе конденсации, в тепловую.



При пароциклическом воздействии количество механической энергии слишком незначительно для повышения нефтедобычи. Механическая энергия для проталкивания нефти на каждой скважине обеспечивается соответствующими факторами (собственно тепловой энергией, нагнетанием и т.д.).

Естественно предположить, что при повторениях такого цикла добыча нефти возрастает от цикла к циклу (если не рассматривать влияние очистки и засорения скважины) прежде всего вследствие постепенного повышения средней температуры в окрестности скважины, лишь затем уровень добычи начинает снижаться в результате истощения месторождения. Однако такое положение, отчасти подтверждаемое некоторыми лабораторными исследованиями, не всегда согласуется с данными промысловых испытаний. В частности, это замечание относится к трём циклам, где необходимо учитывать влияние побочных эффектов.

Физические процессы, происходящие при вытеснении нефти теплоносителем

Повышение температуры пласта влечёт за собой:

1) Уменьшение вязкости нефти и соответственно, изменение подвижностей нефти и воды;

2) Тепловое расширение твёрдого тела и жидкостей;

3) Изменение межфазного натяжения на границе нефть-вода;

4) Изменение смачиваемости.

Относительное влияние различных факторов

При вытеснении нефти нагретой водой (в отсутствие испарения каждый из описанных выше факторов – снижение отношения вязкостей изменения относительных проницаемостей, а также термическое расширение – оказывает воздействие на процесс (рисунок 5). Снижение отношения вязкостей и остаточной нефтенасыщенности приводит к замедлению распространения фронта воды и тем самым к увеличению нефтедобычи до прорыва фронта воды.

Для добычи лёгкой нефти большое значение имеет термическое расширение. В этом случае отношение µ h / µ e очень слабо зависит от температуры и межфазные явления изменяются лишь в силу того, что натяжение на границе нефть-вода является убывающей функцией температуры.

Для тяжёлой нефти отношение µ h / µ e резко падает с ростом температуры, и смачиваемость стенок коллектора более существенно воздействует на вытеснение нефти. Тепловое расширение в этом случае значительно меньше влияет на эффективность процесса, в целом перспективного для нефти подобного типа.

Рисунок 1. Профиль температуры (б), паро- (в) и водонасыщенности (а) при одномерном вытеснении нефти водяным паром

Рисунок 2. Профиль температуры (б), паро- (в) и водонасыщенности (а) при одномерном вытеснении нефти водяным паром

Рисунок 3. Профили паронасыщенности (а) и температуры (б), наблюдаемые при вытеснении воды водяным паром

Рисунок 4. Схема двух циклов паротеплового воздействия на скважину


Рисунок 5. Влияние различных процессов на эффективность вытеснения нефти нагретой водой при отсутствии испарения

Министерство образования и науки Российской Федерации

Федеральное бюджетное государственное образовательное учреждение высшего профессионального образования

«Уфимский государственный нефтяной технический университет»

Кафедра «Сооружение и ремонт газонефтепроводов и газонефтехранилищ»

транспортировка высоковязкой нефти

реферат

ВВЕДЕНИЕ

Перекачка высоковязких и высокозастывающих нефтей

Гидротранспорт высокоязких нефтей

Перекачка термообработанных нефтей

Перекачка нефтей с присадками

Перекачка предварительно подогретых нефтей

Способ перекачки путем кавитационного воздействия

ЗАКЛЮЧЕНИЕ

ВВЕДЕНИЕ

Характерной особенностью современной нефтедобычи является увеличение в мировой структуре сырьевых ресурсов доли трудноизвлекаемых запасов (ТИЗ), к которым относится тяжёлая нефть с вязкостью 30 мПа*с и выше. Запасы таких видов нефти составляют не менее 1 трлн. тонн, что более чем в пять раз превышает объём остаточных извлекаемых запасов нефти малой и средней вязкости. Во многих промышленно развитых странах мира тяжёлая нефть рассматривается в качестве основной базы развития нефтедобычи на ближайшие годы. Наиболее крупными запасами тяжёлой и битуминозной нефти располагает Канада и Венесуэла, а также Мексика, США, Кувейт, Китай.

Россия также обладает значительными ресурсами ТИЗ, и их объём составляет около 55 % от общих запасов российской нефти. Российские месторождения высоковязкой нефти (ВВН) расположены в Пермской области, Татарстане, Башкирии и Удмуртии. Наиболее крупные из них: Ван-Еганское, Северо-Комсомольское, Усинское, Русское, Гремихинское и др., при этом более 2/3 всех запасов высоковязкой нефти находятся на глубинах до 2000 м. Добыча ТИЗ нефти, транспортировка её к пунктам сбора и подготовки и, наконец, переработка с целью получения конечных продуктов - одна из актуальных задач нефтедобывающей промышленности. Существуют различные способы трубопроводной перекачки высоковязких нефтей.


В настоящее время добываются значительные объемы нефтей, обладающих высокой вязкостью при обычных температурах или содержащие большое количество парафина и вследствие этого застывающие при высоких температурах. Перекачка таких нефтей по трубопроводам обычным способом затруднена. Поэтому для их транспортировки применяют специальные методы:

перекачку с разбавителями;

гидротранспорт высоковязких нефтей;

перекачку термообработанных нефтей;

перекачку нефтей с присадками;

перекачку предварительно подогретых нефтей.

Перекачка высоковязких и высокозастывающих нефтей с разбавителями

Одним из эффективных и доступных способов улучшения реологических свойств высоковязких и высокозастывающих нефтей является применение углеводородных разбавителей - газового конденсата и маловязких нефтей.

Использование разбавителей позволяет довольно существенно снизить вязкость и температуру застывания нефти. Это связано с тем, что, во-первых, понижается концентрация парафина в смеси, т. к. часть его растворяется легкими фракциями разбавителя. Во-вторых, при наличии в разбавители асфальто - смолистых веществ последние, адсорбируясь Hi поверхности кристаллов парафина, препятствуют образований прочной структурной решетки.

Первые в нашей стане опыты по перекачке нефтей с разбавителем (керосиновый дистиллят) были проведены инженерами: А. Н. Сахановым и А. А. Кащеевым в 1926 г. Полученные результаты были настолько впечатляющими, что были использованы при проектировании нефтепровода «Грозный- Черное море». В настоящее время перекачка высоковязких и высокозастывающих нефтей с разбавителями широко применяется в нашей стране и за рубежом. Например, высокопарафинистая манышлакская нефть, перекачивается в район г. Самары в подогретом состоянии, а потом смешивается с маловязкими нефтями Поволжья и закачивается в нефтепровод «Дружба».

В общем случае выбор типа разбавителя производится с учетом эффективности его действия на свойства высоковязкой и высокозастывающей нефти затрат на получение разбавителя, его доставку на головные сооружения нефтепровода и на смешение.

Любопытно, что на геологические свойства нефтяной смеси оказывает влияние температура смешиваемых компонентов. Однородная смесь получается, если смешение производится при температуре на 3-5 градусов выше температуры застывания вязкого компонента. При неблагоприятных условиях смешения эффективность разбавителя в значительной степени уменьшается и может произойти даже расслоение смеси.

2. Гидротранспорт высокоязких нефтей

Гидротранспорт высоковязких и высокозастывающих нефтей может осуществляться несколькими способами:

перекачка нефти внутри водяного кольца;

перекачка водонефтяной смеси в виде эмульсии типа «нефть в воде»;

послойная перекачка нефти и воды.

Рисунок 1 - Гидроперекачка нефти внутри водяного кольца:

а - с применением винтовой нарезки; б - с применением кольцевых муфт; в - с использованием перфорированного трубопровода.

Еще в 1906 г И. Д.Исаак осуществил в США перекачку высоковязкой (п = 25 102 /c) калифорнийской нефти с водой по трубопроводу диаметром "6 мм на расстояние 800 м. К внутренней стенке трубы была приварен спирально свернутая проволока, обеспечивающая закрутку потока (рисунок 1). В результате более тяжелая вода отбрасывалась непосредственно к стенке, а поток нефти двигался внутри водяного кольца, испытывая минимальное трение. Было установлено, что максимальна производительность трубопровода при постоянном перепаде давление достигалась при соотношении расходов нефти и воды, равном9:1. Результаты эксперимента были использованы при строительстве промышленного нефтепровода диаметром 203 мм и протяженностью 50 км. Винтовая дорожка в нем имела высоту 24 мм и шаг около 3 м.

Однако широкого распространения данный способ транспорта не получил из-за сложности изготовления винтовых нарезок на внутренней поверхности труб. Кроме того, в результате отложения парафина нарезка засоряется, водяное кольцо у стенки не формируется, что резко ухудшает параметры перекачки.

Сущность другого способа гидротранспорта состоит в том, что высоковязкая нефть и вода смешиваются перед перекачкой в такой пропорции, чтобы образовалась эмульсия типа «нефть в воде» (рисунок 2). В этом случае капли нефти окружены водяной пленкой и поэтому контакта нефти со стенкой трубы не происходит.

Рисунок 2 - Гидроперекачка в виде эмульсии:

а - типа «нефть в воде»; б - типа «вода в нефти»

Для стабилизации эмульсий и придания стенкам трубопровода гидрофильных свойств, т.е. способности удерживать на своей поверхности воду, в них добавляют поверхностно - активные вещества (ПАВ). Устойчивость эмульсии типа «нефть в воде» зависит от типа и концентрации ПАВ, температуры, режима течения потока, соотношения воды и нефти в смеси.

Уменьшение объема слюды в смеси ухудшает устойчивость эмульсии. В результате экспериментов установлено, что минимально допустимое содержание воды 1авно 30 %.

Недостатком данного способа гидротранспорта является опасность инверсии фаз, т. е. превращения эмульсии «нефть в воде» в эмульсию «вода в нефти» при изменении скорости или температуры перекачки. Такая эмульсия имеет вязкость даже большую, чем вязкость исходной нефти. Кроме того, при прохождении эмульсии через насосы она очень интенсивно перекачивается и впоследствии ее сложно разделить на нефть и воду.

Наконец, третий способ гидротранспорта - это послойная перекачка нефти и воды (рисунок 3). В этом случае вода, как более тяжелая жидкость, занимает положение у нижней образующей трубы, а нефть - у верхней. Поверхность раздела фаз в зависимости от скорости перекачки может быть как плоской, так и криволинейной. Уменьшение гидравлического сопротивления трубопровода в этом случае происходит в связи с тем, что часть нефти контактирует не с неподвижной стенкой, а с движущейся водой. Данный способ перекачки также не может быть применен на трубопроводах с промежуточными насосными станциями, т.к. это привело бы к образованию стойких водонефтяных эмульсий.

Рисунок 3 - Структурные формы водонефтяного потока при послойной перекачке нефти и воды: а - линзовая; б - раздельная с плоской границей; в - раздельная с криволинейной границей; г - кольцевая эксцентричная; д - кольцевая концентричная

Каждая структурная форма течения устанавливается самопроизвольно, как только достигаются условия для ее существования.

Связь структурных форм водонефтяного потока с величиной гидравлического уклона. Согласно экспериментальным исследованиям Ф.М.Галина, она такова (рисунок 4).

Рисунок 4 - Зависимость гидравлического уклона от расхода при перекачке смеси нефти и воды

3. Перекачка термообработанных нефтей

Термообработкой называется тепловая обработка высокопарафинистой нефти, предусматривающая ее нагрев до температуры, превышающей температуру плавления парафинов, и последующее охлаждение с заданной скоростью, для улучшения реологических параметров.

Первые в нашей стране опыты по термообработке нефтей были выполнены в 30-х годах. Так, термическая обработка нефти Ромашкинского месторождения позволила снизить ее вязкость более чем в 2 раза и уменьшить температуру застывания на 20 градусов.

Установлено, что улучшение реологических свойств нефтей связано с внутренними изменениями в них, происходящими в результате термообработки. В обычных условиях при естественном охлаждении парафинистых нефтей образуется кристаллическая парафиновая структура, придающая нефти свойства твердого тела. Прочность структуры оказывается тем больше, чем выше концентрация парафина в нефти и чем меньше размеры образующихся кристаллов. Осуществляя нагрев нефти до температуры, превышающей температуру плавления парафинов, мы добиваемся их полного растворения. При последующем охлаждении нефти происходит кристаллизация парафинов. На величину, число и форму кристаллов парафина в нефти оказывает влияние соотношение скорости возникновения центров кристаллизации парафина и скорости роста уже выделившихся кристаллов. Асфальто-смолистые вещества, адсорбируясь на кристаллах парафина, снижают его поверхностное натяжение. В результате процесс выделения парафина на поверхности уже существующих кристаллов становится энергетически более выгодным, чем образование новых центров кристаллизации. Это приводит к тому, что в термообработанной нефти образуются достаточно крупные кристаллы парафина. Одновременно из-за наличия на поверхности этих кристаллов адсорбированных асфальтенов и смол силы коагуляционного сцепления между ними значительно ослабляются, что препятствует образованию прочной парафиновой структуры.

Рисунок 5 - Восстановление эффективной вязкости озексуатской (1) и жетыбайской (2) нефтей во времени после термообработки

Эффективность термообработки зависит от температуры подогрева, скорости охлаждения и состояния нефти (статика или динамика) в процессе охлаждения. Оптимальная температура подогрева при термообработке находится экспериментально, наилучшие условия охлаждения - в статике.

Следует иметь в виду, что реологические параметры термообработанной нефти с течением времени ухудшаются и в конце концов достигают значений, которые нефть имела до термообработки (рисунок 5). Для озексуатской нефти это время составляет 3 суток, а для мангышлакской - 45. Так что не всегда достаточно термически обработать нефть один раз для решения проблемы ее трубопроводного транспорта. Кроме того, капитальные вложения <#"214" src="/wimg/16/doc_zip7.jpg" />

Рисунок 6 - Принципиальная технологическая схема «горячей» перекачки

По мере движения в магистральном трубопроводе нефть за счет теплообмена с окружающей средой остывает. Поэтому по трассе трубопровода через каждые 25-100 км устанавливают пункты подогрева. Промежуточные насосные станции размещают в соответствии с гидравлическим расчетом, но обязательно совмещают с пунктами подогрева, чтобы облегчить их эксплуатацию. В конце концов нефть закачивается в резервуары конечного пункта, также оборудованные системой подогрева.

Перекачка нефти по «горячим» трубопроводам ведется с помощью обычных центробежных насосов. Это связано с тем, что температура перекачиваемой нефти достаточно высока, и поэтому ее вязкость невелика. При выталкивании остывшей нефти из трубопроводов используются поршневые насосы, например марки НТ-45. Для подогрева нефти используют радиантно-конвекционные печи, КПД которых достигает 77 %.

Но практически все магистральные нефтепроводы неизотермические. От температуры зависит вязкость перекачиваемой нефти, гидравлическое сопротивление трубопровода, подача Q и давление P центробежных насосов (ЦБН). Следовательно, себестоимость перекачки также зависит от температурного режима трубопровода. Поэтому расчет эксплуатационных режимов для летних и зимних условий, квазистационарных и нестационарных, должен выполняться с учетом теплообмена трубопровода с окружающей средой. Неизотермичность потока может быть вызвана различными причинами:

Температура вязкой нефти может повышаться по мере ее следования на перегонах между насосными станциями за счет выделения тепла трения. Анализ фактического материала по 19-ти магистральным трубопроводам, включая нефтепроводы "Дружба", Шаим - Тюмень, Александровское - Анжеро - Судженск, Усть - Балык - Омск, нефтепроводы Западной и Северо-Западной Сибири, Верхне - Волжские, нефтепроводы Тэбук - Ухта, Уса - Ухта и др., выявил явные, в 1,5-2 раза по отношению к среднему значению, изменения коэффициента теплопередачи. Этот факт свидетельствуют также о нестационарности теплообмена трубопроводов с окружающей средой. Нестабильность теплогидравлических режимов магистральных нефтепроводов приводит к перерасходу электроэнергии на перекачку и превышению эксплуатационных затрат.

При закачке в трубопровод нефти с температурой, отличающейся от температуры окружающей среды вдоль трассы, формируется неизотермический начальный участок, длина которого может быть соизмерима или равна длине перегона между насосными станциями. Нефть, добытая из недр Земли, обработанная присадками (температура ввода присадок порядка 50…70°С) или прошедшая специальную термообработку, улучшающую ее транспортабельные свойства, перекачивается в неизотермическом режиме. Так как температурные режимы начальных участков трубопроводов нестабильны, сильно зависят от климатических условий, то теплогидравлический расчет таких участков должен выполняться с учетом нестационарного теплообмена. Характерная ситуация сложилась на нефтепроводе Кумколь - Каракоин Восточного филиала НКТН КазТрансОйл. В условиях глубокой недогрузки по производительности расчет эксплуатационных режимов и обоснование способов перекачки вязкопластичной нефти, обладающей тиксотропными свойствами, весьма проблематичен. Введение депрессорных присадок в поток требует подогрева нефти и делает перекачку нефти по трубопроводу неизотермической. Следует отметить, что использование присадок не решает проблемы. В холодные зимние периоды создаются ситуации, когда нефть прокачать невозможно. В условиях Средней Азии способ "горячей" перекачки Кумкольских нефтей, не требующий дорогостоящих присадок, может оказаться экономически выгодным. Следует отметить, что имеется богатый опыт эксплуатации в подобных условиях крупнейшего "горячего" нефтепровода большого диаметра (720-1020 мм) Узень - Гурьев - Куйбышев, по которому перекачивалась высокозастывающая мангышлакская нефть с температурой застывания tз = 28 °С и температурой нагрева tн = 65 °С. В настоящее время этот трубопровод также неизотермический, но работает на пониженных температурных режимах, порядка 30 °С, так как смесь нефтей, идущая по трубопроводу, имеет умеренную вязкость. С увеличением доли высоковязких нефтей температура перекачки будет соответственно возрастать. Для магистрального нефтепровода Уса - Ухта, по которому перекачиваются высокозастывающие нефти Тимано - Печерской нефтегазоносной провинции с добавлением депрессорных присадок, также остро стоит проблема расчета и обоснования режимов перекачки нефтей по трубопроводу. Дело в том, что доля тяжелой и высокопарафинистой нефти, обладающей вязкопластичными свойствами, в перспективе будет колебаться в пределах 37…56 % , а использование депрессорных присадок может не дать ожидаемого эффекта. Способ "горячей" перекачки в настоящее время рассматривается как альтернативный.

Особую сложность представляют собой расчеты "горячих" трубопроводов, по которым перекачка высоковязких и высокозастывающих жидкостей осуществляется при более высоких температурах, порядка 60-120 °С. При "горячей" перекачке осуществляется подогрев нефти в печах промежуточных тепловых станций, что не только увеличивает себестоимость трубопроводного транспорта нефти или нефтепродуктов, но и ставит специфические проблемы надежности и экологической безопасности системы. Так как подогретая нефть со временем остывает, а специально обработанная нефть теряет временно улучшенные транспортабельные свойства, то как для "горячих", так и для любых неизотермических трубопроводов, должны рассчитываться:

) время безопасной остановки τбо и пусковые параметры центробежных насосов (подача Q и давление Р) на момент возобновления перекачки;

) время прогрева трубопровода τпр при пуске его из холодного состояния;

) время безопасной работы τбр трубопровода на пониженных режимах (при временном уменьшении подачи насосов, снижении температуры нагрева перекачиваемой нефти и т.д.).

При расчетах эксплуатационных режимов неизотермических трубопроводов необходимо считаться с тем, что подобные системы практически не работают в проектных режимах по ряду причин, таких, как климатические изменения окружающей среды (температуры, свойств грунта и т.п.), сезонность загрузки системы, поэтапный ввод мощностей, старение и износ оборудования, падение производительности вследствие истощения месторождений, изменение грузопотоков и т.д. Поэтому, как для "горячих", так и просто неизотермических трубопроводов, характеризующихся менее интенсивной теплоотдачей, реальна опасность "замораживания" трубопровода или "сбрасывания" подачи вследствие чрезмерного роста гидравлического сопротивления. Поэтому к теплогидравлическим расчетам таких трубопроводов предъявляются повышенные требования. Кроме обычного проектировочного теплогидравлического расчета необходимо выполнять расчеты нестационарных режимов, таких, как пуск, остановка и возобновление перекачки. Динамические характеристики могут быть построены для жидкостей с различными реологическими моделями. Большим преимуществом данного метода является то, что он позволяет учесть изменение подачи центробежных насосов вследствие изменения гидравлического сопротивления трубопровода. При использовании соответствующей программы на ЭВМ становится возможным учесть при этом также изменение и других параметров перекачки и теплообмена.

В настоящее время в мире эксплуатируются более 50 «горячих» магистральных трубопроводов. Крупнейшим из них является нефтепровод «Узень-Гурьев-Куйбышев».

6. Способ перекачки путем кавитационного воздействия

Большой интерес представляют результаты экспериментального исследования изменения вязкости нефти путем кавитационного воздействия по способу, в котором предложено устройство, содержащее в линии трубопровода полый цилиндрический корпус переменного сечения, включающий плавное сужение, обеспечивающее возникновение кавитации. В качестве высокоамплитудных колебаний в жидкости выступают кавитационные пузырьки, обладающие высокой скоростью, за счет чего происходит снижение вязкости нефти.

Может быть рассчитан кавитационной модуль обработки парафинистой нефти с целью снижения её вязкости, на ее основе которого разработана гидродинамическая проточная установка и проведены ее испытания. Эксперименты показали, что после сонохимической обработки нефти вязкость нефти была снижена на 35%.

Основным недостатком этого устройства является интенсивный кавитационный износ его рабочих поверхностей, генерирующих (из зародышевых ядер) кавитационные пузырьки, большая часть которых схлопывается на этих поверхностях. Другим недостатком является слабая степень регулирования интенсивности кавитационной обработки, так как количество ядер кавитации в исходной нефти регулировать затруднительно. Кроме того, размеры образующихся в таких устройствах кавитационных пузырьков, от которых в основном зависит интенсивность кавитационно-куммулятивной обработки также практически не поддаются регулированию. Время нахождения ядра кавитации в зоне разрежения, необходимое для образования пузырька требуемых размеров, в таких устройствах может изменяться в очень малых пределах и связано с частотой пульсаций, вибраций и т. д. Основной параметр, определяющий кинетику кавитационного воздействия - первоначальный (перед схлопыванием) размер кавитационных пузырьков может изменяться в весьма нешироких пределах и зачастую далек от максимального. Перечисленные недостатки негативно проявляются в обработанной нефти - незначительное снижение вязкости, малое время тиксотропного восстановления.

Анализ исследований по применению УЗ и гидродинамической кавитации в нефтях для интенсификации различных технологических процессов, показывает перспективность этого метода. Однако, УЗ кавитация не нашла широкого применения на предприятиях с большим объемом производства по ряду причин: значительных энергозатрат на генерацию кавитационных пузырьков, резкого затухания ультразвуковых волн в технологических суспензиях, ограничения локального воздействия зоной колебаний излучающей поверхности, разрушения рабочих поверхностей кавитацией и т. д.

ЗАКЛЮЧЕНИЕ

Наиболее изученным и распространенным способом транспорта высоковязких нефтей в настоящее время является их "горячая перекачка" по трубопроводам. Несмотря на то, что это наиболее отработанная технология, она обладает серьезными недостатками. Прежде всего, это высокая энергоемкость, т.к. в качестве топлива при подогреве, как правило, используется сама же транспортируемая среда - ценное химическое сырье и топливо (нефть, мазут).

Вторая трудность связана с тем, что при неблагоприятных погодных условиях возможно "замораживание" трубопровода. Наконец, сооружение таких трубопроводов в районах с мерзлыми и посадочными грунтами затруднено по экологическим соображениям из-за проблематичности обеспечения надежности конструкции и осложнений в технологии строительства.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1Коршак, А.А. Проектирование и эксплуатация газонефтепроводов / А.А. Коршак, А.М. Нечваль. - СПб.:Недра, 2008.- 488 с.

Гаррис, Н.А. Построение динамической характеристики магистрального трубопровода (модель вязкопластичной жидкости) // Нефтегазовое дело.- 2014. -№1.- C.10-13.

Фарманзаде А.Р. 1 , Карпунин Н.А. 2 , Хромых Л.Н. 3 , Евсенкова А.О. 4 , Аль-Гоби Г. 5

1 Аспирант, 2 студент, 3 доцент, 4 студент, 5 студент. 1,2,4,5 Национальный минерально-сырьевой университет «Горный», 3 Самарский государственный технический университет

ИССЛЕДОВАНИЕ РЕОЛОГИЧЕСКИХ СВОЙСТВ ВЫСОКОВЯЗКОЙ НЕФТИ ПЕЧЕРСКОГО МЕСТОРОЖДЕНИЯ

Аннотация

В статье изучены реологические свойства тяжелой нефти Печерского месторождения в широком температурном диапазоне. Основное внимание уделено изучению вязкой и упругой компонентам вязкости в зависимости от температуры для обоснования оптимальных условий разработки данного нефтяного месторождения.

Ключевые слова: высоковязкая нефть, битум, упругая компонента вязкости, вязкая компонента вязкости, реологические свойства.

Farmanzade A . R . 1 , Karpunin N . A . 2 , Khromykh L.N. 3 , Evsenkova A . O . 4 , Al Gobi G . 5

1 Postgraduate student, 2 student, 3 associate professor, 4 student, 5 student. 1,2,4,5 National Mineral Recourses University (University of Mines), 3 Samara State Technical University

THE INVESTIGATION RHEOLOGICAL PROPERTIES OF HEAVY OIL FIELD PECHORA

Abstract

There is the investigation of the rheological properties of heavy oil field Pechora in a wide temperatures range in this paper. Main attention is given to the study of the loss and storage modulus of the viscosity as a function of temperature for the recommendation of optimal conditions for development of this oil field.

Keywords: heavy oil, bitumen, storage modulus, loss modulus, rheological properties.

На сегодняшний день, в связи с неуклонным истощением запасов легких, маловязких нефтей, все большее значение приобретает необходимость введения в разработку месторождений трудноизвлекаемых запасов, таких как высоковязкие нефти и природные битумы, большая часть которых находится в Канаде, Венесуэле и России. В Российской Федерации более 70% высоковязких нефтей приурочены к 5 регионам: в Пермской области (более 31 %), в Татарстане (12,8 %), в Самарской области (9,7 %), в Башкортостане (8,6 %) и Тюменской области (8,3 %) .

Месторождения нефтей такого типа, как правило, характеризуются небольшими глубинами залегания нефтеносных пластов и, зачастую, низкой пластовой температурой, в то время как залегающие в них нефти или битумы обладают неньютоновскими свойствами , обусловленными большим содержанием парафинов асфальтенов и смол . При высоком содержании тяжелых компонентов в составе нефтей проявляются вязкоупругие свойства, которые впервые были обнаружены еще в 1970-х гг. .

Высокие значения вязкости таких нефтей в пластовых условиях являются причиной низких дебитов добывающих скважин, а иногда, и полного их отсутствия при попытках разработки месторождения на естественном режиме . В настоящее время термические методы воздействия на продуктивный пласт получили наибольшее распространение при разработке залежей таких углеводородов . Среди этих технологий стоит отметить циклическую (cyclic steam injection) и площадную закачку пара, как наиболее распространенные методы добычи и интенсификации притока в России и парогравитационное дренирование (SAGD – steam assisted gravity drainage), широко применяемое за рубежом .

Для изучения свойств высоковязкой нефти, залегающей в сложнопостроенном карбонатном коллекторе, было выбрано Печерское месторождение, располагающееся на берегу реки Волга, у села Печерское. Ранее на данном месторождении добывалась горная порода (известняки и доломиты), насыщенная тяжелой нефтью, для последующего извлечения из нее сырья для производства битумной мастики. Авторами были организованы полевые выходы на данное месторождение для сбора информации о строении залежи и образцов для изучения реологических свойств нефти и пустотного пространства пласта-коллектора.

В данной работе была изучена реологических свойств нефти от температуры. При этом использовался современный высокоточный ротационный вискозиметр с воздушными подшипниками.

Эксперимент по изучению зависимости динамической вязкости от температуры проводился следующим образом: на разогретую до 70°С площадку вискозиметра помещалась капля нефти объемом 1 мл, затем капля прижималась ротором, и температура повышалась до 110°С. На вискозиметре было задано значение угловой скорости 5 с -1 , после чего температура плавно опускалась до 50°С. Данная температура была предложена в качестве граничной для предотвращения излишней перегрузки двигателя вискозиметра.

Рис. 1 – Зависимость динамической вязкости высоковязкой нефти от температуры.

На представленном рисунке видно, что динамическая вязкость нефти может быть описана степенной функцией вида y=1177320551696170000x -7,24 с величиной достоверности аппроксимации R² = 0,99554. Нефть на всем интервале представленных температур является высоковязкой (вязкость при 110°С составляет 2003 мПа∙с, а при 50°С – 502343 мПа∙с). На данном этапе испытаний измерить вязкость нефти при пластовой температуре 20°С не было возможно из-за ограничения возможностей вискозиметра.

Для углубленного изучения реологических свойств данной нефти были проведены дополнительные специализированные динамические испытания по определению упругой и вязкой компонент вязкости. В ходе экспериментов было изучено влияние снижения температуры на упругую компоненту вязкости (динамический модуль сдвига, также называемый storage modulus) и вязкую компоненту вязкости (податливость или loss modulus) . Нефть Печерского месторождения, используемая для проведения исследований, в первом случае охлаждалась в выбранном интервале температур от 90ºС до 50ºС. Эксперимент проходил следующим образом: на разогретую до 70°С площадку вискозиметра помещалась капля нефти объемом 1 мл, затем капля прижималась ротором, и температура повышалась до 90°С, после чего плавно снижалась до 50°С с записью данных. Динамическая нагрузка была представлена осцилляционным движением ротора с частотой 1 Гц и нагрузкой 100 Па. Результаты представлены на рисунке 2.

Рис. 2 – Зависимость упругой (storage modulus) и вязкой (loss modulus) компонент вязкости высоковязкой нефти Печерского месторождения от температуры.

Анализируя представленные зависимости, возможно сделать следующие выводы: во-первых, как вязкая, так и упругая компоненты вязкости нефти уменьшаются с увеличением температуры и достигают относительно небольших значений при 80°С, что доказывает необходимость использования тепловой энергии при разработке данного месторождения. Во-вторых, заметно, что на исследованном интервале температур нефть обладает упругими свойствами, которые хоть и уменьшаются при увеличении температуры, но достигают значительных величин: 23,54 Па.

Исходя из результатов проведенных исследований, возможно сделать следующие выводы:

  1. Высоковязкая нефть Печерского месторождения характеризуется аномально высокой вязкостью: измеренная динамическая вязкость при 50°С составляет 502343 мПа∙с.
  2. Исходя из того, что вязкость нефти при повышении температуры от 50 до 110°С снижается с 502343 мПа∙с до 2000 мПа∙с для извлечения нефти из породы данного месторождения необходимо применение термического воздействия.
  3. Изученная нефть обладает сложными реологическими свойствами, обусловленными, вероятно, высоким содержанием асфальтенов и смол, характерным для приповерхностных месторождений Самарской области. Высокие значения вязкой и упругой компонент вязкости наблюдаются на всем интервале температур, при которых проводились динамические испытания, что несомненно окажет негативное влияние на процесс извлечения нефти из пласта-коллектора.
  4. Авторами работы запланированы дальнейшие испытания, направленные на обоснование эффективных технологий извлечения таких аномальных нефтей из продуктивных пластов, например, технологии с применением комплексного воздействия тепловыми агентами и растворителями.

Литература

  1. Девликамов В.В., Хабибуллин З.А., Кабиров М.М. Аномальные нефти. -М.: Недра, 1975. -168 с.
  2. Зиновьев А.М., Ковалев А.А., Максимкина Н.М., Ольховская В.А., Рощин П.В., Мардашов Д.В. Обоснование режима разработки залежи аномально вязкой нефти на основе комплексирования исходной геолого-промысловой информации//Вестник ЦКР Роснедра. -2014. -№3. -С. 15-23.
  3. Зиновьев А.М., Ольховская В.А., Ковалев А.А. Обоснование аналитической модели псевдоустановившегося притока нелинейно вязкопластичной нефти к вертикальной скважине//Вестник ЦКР Роснедра. -2013. -№2. -С. 40-45.
  4. Зиновьев А.М., Ольховская В.А., Максимкина Н.М. Проектирование систем разработки месторождений высоковязкой нефти с использованием модели неньютоновского течения и результатов исследования скважин на приток//Нефтепромысловое дело. -2013. -№1. -С. 4-14.
  5. Литвин В.Т., Рощин П.В. Изучение влияния растворителя «Нефрас С2-80/120» на реологические свойства парафинистой высоковязкой нефти Петрухновского месторождения//Материалы научной сессии ученых Альметьевского государственного нефтяного института. -2013. -Т.1. -№ 1. -С. 127-130.
  6. Полищук Ю.М., Ященко И.Г. Высоковязкие нефти: анализ пространственных и временных изменений физико-химических свойств // Электронный научный журнал «Нефтегазовое дело». 2005 №1. [Электронный ресурс]: http://ogbus.ru/authors/PolishukYu/PolishukYu_1.pdf (дата обращения 15.11.2015).
  7. Ольховская В.А., Сопронюк Н.Б., Токарев М.Г. Эффективность ввода в эксплуатацию небольших залежей нефти с неньютоновскими свойствами//Разработка, эксплуатация и обустройство нефтяных месторождений/Самара: Сборник научных трудов ООО «СамараНИПИнефть». -2010. -Вып.1. -С. 48-55.
  8. Ольховская В.А. Подземная гидромеханика. Фильтрация неньютоновской нефти. -М.: ОАО «ВНИИОЭНГ», 2011. -224 с.
  9. Рогачев М.К., Колонских А.В. Исследование вязкоупругих и тиксотропных свойств нефти Усинского месторождения//Нефтегазовое дело. -2009. -Т.7. -№1. -С.37-42.
  10. Рощин П.В. Обоснование комплексной технологии обработки призабойной зоны пласта на залежах высоковязких нефтей с трещинно-поровыми коллекторами: дис. канд. техн. наук. -СПб., 2014. -112 с.
  11. Рощин П.В., Петухов А.В., Васкес Карденас Л.К., Назаров А.Д., Хромых Л.Н. Исследование реологических свойств высоковязких и высокопарафинистых нефтей месторождений Самарской области. Нефтегазовая геология. Теория и практика. 2013. Т. 8. № 1. С. 12.
  12. Рощин П.В., Рогачев М.К., Васкес Карденас Л.К., Кузьмин М.И., Литвин В.Т., Зиновьев А.М. Исследование кернового материала Печерского месторождения природного битума с помощью рентгеновского компьютерного микротомографа SkyScan 1174V2. Международный научно-исследовательский журнал. 2013. № 8-2 (15). С. 45-48.
  13. Рузин Л.М. Технологические принципы разработки залежей аномально вязких нефтей и битумов / Л.М. Рузин, И.Ф. Чупров; Под ред. Н.Д. Цхадая. Ухта, 2007. 244 с.
  14. Petukhov A.V., Kuklin A.I., Petukhov A.A., Vasques Cardenas L.C., Roschin P.V. Origins and integrated exploration of sweet spots in carbonate and shale oil-gas bearing reservoirs of the Timan-Pechora basin. Society of Petroleum Engineers – European Unconventional Resources Conference and Exhibition 2014: Unlocking European Potential 2014. С. 295-305.
  15. Pierre C. et al. Composition and heavy oil rheology //Oil & Gas Science and Technology. – 2004. – Т. 59. – №. – С. 489-501.
  16. Roschin P.V., Zinoviev A.M., Struchkov I.A., Kalinin E.S., Dziwornu C.K. Solvent selection based on the study of the rheological properties of oil. Международный научно-исследовательский журнал. -2015. -№ 6-1 (37). -С. 120-122.

References

  1. Devlikamov V.V., Habibullin Z.A., Kabirov M.M. Anomal’nye nefti. -M.: Nedra, 1975. -168 s.
  2. Zinov’ev A.M., Kovalev A.A., Maksimkina N.M., Ol’hovskaja V.A., Roshhin P.V., Mardashov D.V. Obosnovanie rezhima razrabotki zalezhi anomal’no vjazkoj nefti na osnove kompleksirovanija ishodnoj geologo-promyslovoj informacii//Vestnik CKR Rosnedra. -2014. -№3. -S. 15-23.
  3. Zinov’ev A.M., Ol’hovskaja V.A., Kovalev A.A. Obosnovanie analiticheskoj modeli psevdoustanovivshegosja pritoka nelinejno vjazkoplastichnoj nefti k vertikal’noj skvazhine//Vestnik CKR Rosnedra. -2013. -№2. -S. 40-45.
  4. Zinov’ev A.M., Ol’hovskaja V.A., Maksimkina N.M. Proektirovanie sistem razrabotki mestorozhdenij vysokovjazkoj nefti s ispol’zovaniem modeli nen’jutonovskogo techenija i rezul’tatov issledovanija skvazhin na pritok//Neftepromyslovoe delo. -2013. -№1. -S. 4-14.
  5. Litvin V.T., Roshhin P.V. Izuchenie vlijanija rastvoritelja «Nefras S2-80/120» na reologicheskie svojstva parafinistoj vysokovjazkoj nefti Petruhnovskogo mestorozhdenija//Materialy nauchnoj sessii uchenyh Al’met’evskogo gosudarstvennogo neftjanogo instituta. -2013. -T.1. -№ 1. -S. 127-130.
  6. Polishhuk Ju.M., Jashhenko I.G. Vysokovjazkie nefti: analiz prostranstvennyh i vremennyh izmenenij fiziko-himicheskih svojstv // Jelektronnyj nauchnyj zhurnal «Neftegazovoe delo». 2005 №1. : http://ogbus.ru/authors/PolishukYu/PolishukYu_1.pdf (data obrashhenija 15.11.2015).
  7. Ol’hovskaja V.A., Sopronjuk N.B., Tokarev M.G. Jeffektivnost’ vvoda v jekspluataciju nebol’shih zalezhej nefti s nen’jutonovskimi svojstvami//Razrabotka, jekspluatacija i obustrojstvo neftjanyh mestorozhdenij/Samara: Sbornik nauchnyh trudov OOO «SamaraNIPIneft’». -2010. -Vyp.1. -S. 48-55.
  8. Ol’hovskaja V.A. Podzemnaja gidromehanika. Fil’tracija nen’jutonovskoj nefti. -M.: OAO «VNIIOJeNG», 2011. -224 s.
  9. Rogachev M.K., Kolonskih A.V. Issledovanie vjazkouprugih i tiksotropnyh svojstv nefti Usinskogo mestorozhdenija//Neftegazovoe delo. -2009. -T.7. -№1. -S.37-42.
  10. Roshhin P.V. Obosnovanie kompleksnoj tehnologii obrabotki prizabojnoj zony plasta na zalezhah vysokovjazkih neftej s treshhinno-porovymi kollektorami: dis. kand. tehn. nauk. -SPb., 2014. -112 s.
  11. Roshhin P.V., Petuhov A.V., Vaskes Kardenas L.K., Nazarov A.D., Hromyh L.N. Issledovanie reologicheskih svojstv vysokovjazkih i vysokoparafinistyh neftej mestorozhdenij Samarskoj oblasti. Neftegazovaja geologija. Teorija i praktika. 2013. T. 8. № 1. S. 12.
  12. Roshhin P.V., Rogachev M.K., Vaskes Kardenas L.K., Kuz’min M.I., Litvin V.T., Zinov’ev A.M. Issledovanie kernovogo materiala Pecherskogo mestorozhdenija prirodnogo bituma s pomoshh’ju rentgenovskogo komp’juternogo mikrotomografa SkyScan 1174V2. Mezhdunarodnyj nauchno-issledovatel’skij zhurnal. 2013. № 8-2 (15). S. 45-48.
  13. Ruzin L.M. Tehnologicheskie principy razrabotki zalezhej anomal’no vjazkih neftej i bitumov / L.M. Ruzin, I.F. Chuprov; Pod red. N.D. Chadaja. Uhta, 2007. 244 s.
  14. Petukhov A.V., Kuklin A.I., Petukhov A.A., Vasques Cardenas L.C., Roschin P.V. Origins and integrated exploration of sweet spots in carbonate and shale oil-gas bearing reservoirs of the Timan-Pechora basin. Society of Petroleum Engineers – European Unconventional Resources Conference and Exhibition 2014: Unlocking European Potential 2014. S. 295-305.
  15. Pierre C. et al. Composition and heavy oil rheology //Oil & Gas Science and Technology. – 2004. – T. 59. – №. 5. – S. 489-501.
  16. Roschin P. V. et al. Experimental investigation of heavy oil recovery from fractured-porous carbonate core samples by secondary surfactant-added injection//SPE Heavy Oil Conference-Canada. – Society of Petroleum Engineers, 2013.
  17. Roschin P.V., Zinoviev A.M., Struchkov I.A., Kalinin E.S., Dziwornu C.K. Solvent selection based on the study of the rheological properties of oil. Mezhdunarodnyj nauchno-issledovatel’skij zhurnal. -2015. -№ 6-1 (37). -S. 120-122.